重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 132-139.

• 信息·计算机 • 上一篇    下一篇

果园绿篱修剪机械手路径规划算法研究

夏长高,许秋月,韩江义   

  1. 江苏大学 汽车与交通工程学院,江苏 镇江 21201
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:夏长高,男,教授,博士生导师,主要从事农业机械研究,Email:771652018@qq.com;许秋月,女,硕士研究生,主 要从事多自由度修剪装置研发研究,Email:XQY0913@163.com。

Research on the path planning algorithm of an orchard hedge pruning manipulator

  • Online:2023-02-16 Published:2023-02-16

摘要: 为提高规划效率,缩短路径长度,保证绿篱修剪机械手的平稳进行,提出了一种基 于引力思想和目标偏移概率的快速搜索随机树算法(abRRT),将目标偏转概率和引力思想引 入渐近最优快速搜索随机树 RRT算法中,可以兼顾规划效率和路径长度。比较基于目标偏移 概率快速搜索随机树 (biasRRT)、RRT 和 abRRT 算法,结果表明:在修剪树篱顶面时, abRRT算法较 biasRRT算法的路径长度缩短 66.32%,规划时间较 RRT 降低 44.19%;修剪 树篱侧面时,abRRT算法较 biasRRT算法的路径长度缩短 67.17%,规划时间比 RRT算法降 低 73.87%。仿真表明:提出的 abRRT算法大幅提高了搜索效率,缩短了路径长度。

关键词: 快速探索随机树, 运动学, 路径规划, 绿篱修剪机械手

Abstract: To improve planning efficiency, shorten path length and ensure a smooth operation of a hedgerow pruning manipulator, this paper proposes a rapidly-exploring random tree algorithm (a-bRRT*) based on gravity and target offset probability. The algorithm introduces the idea of target deflection probability and the gravitational force into the asymptotically optimal rapid exploration random tree RRT* algorithm, which can balance planning efficiency and path length. The comparison of the rapidly exploring random trees based on target offset probability (bias-RRT) with RRT* and a-bRRT* shows that, when the top surface of hedge is being pruned, the path length of a-bRRT* algorithm is 66.32% shorter than bias-RRT, and the planning time is 44.19% shorter than RRT*. When the side of the hedge is being trimmed, the path length of a-bRRT* algorithm is 67.17% shorter than bias-RRT, and the planning time is 73.87% shorter than RRT*. The simulation results show that the proposed a-bRRT* algorithm greatly improves the search efficiency and shortens the path length.

中图分类号: 

  • TP241.3