重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 140-148.

• 信息·计算机 • 上一篇    下一篇

采用改进闪电搜索算法的冷水机组故障特征选择研究

王华秋,兰 群,赵利军   

  1. (1.重庆理工大学 两江人工智能学院,重庆 401135; 2.河南中烟工业有限责任公司安阳卷烟厂,河南 安阳 455000)
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:王华秋,男,博士,教授,主要从事智能控制、故障诊断和节能优化研究,Email:wanghuaqiu@163.com;通讯作者 兰群,女,硕士研究生,主要从事故障诊断研究,Email:lanqun@stu.cqut.edu.cn。

Research on fault feature selection of the chiller using the improved lightning search algorithm

  • Online:2023-02-16 Published:2023-02-16

摘要: 提出了一种用于冷水机组故障特征选择的方法,先使用 FisherScore剔除少数对故 障类别极不敏感的特征,再利用改进的闪电搜索算法确定特征的权重以及应选个数,从而得到 最终的特征子集。在 ASHRAE1043RP数据上进行实验,得到了包含 13个参数的冷水机组故障 特征子集且大部分是温度参数。采用最近邻算法(knearestneighbors,KNN)、随机森林(random forest,RF)、BP(backbropagation)神经网络和门控循环单元(gatedrecurrentunit,GRU)4种方法 求出了每类故障的诊断准确率,与原始数据相比,部分故障诊断精度也有所提高,验证了所选的 特征子集的有效性。

关键词: 冷水机组, 故障特征子集, 改进的闪电搜索算法, 故障诊断

Abstract: This paper proposes a method for fault feature selection of chillers. Firstly, the Fisher Score is used to eliminate a few features that are extremely insensitive to fault categories, and then the improved Lightning Search Algorithm is used to determine the weight of features and the number of features that should be selected. Thus, the final chiller feature subset is obtained. Experiments are carried out on ASHRAE Research Project 1 043 data, and a subset of chiller fault features containing 13 parameters is obtained, most of which are temperature parameters. Furthermore, four methods including k-Nearest neighbors (KNN), random forest (RF), BP neural network and gated recurrent unit (GRU) are used to obtain the diagnostic accuracy of each fault. Partial fault diagnosis accuracy is also improved compared with the original data, verifying the effectiveness of the selected feature subset.

中图分类号: 

  • TP277