重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 75-84.

• “复杂环境智能汽车感知与控制”专栏 • 上一篇    下一篇

智能网联汽车数字孪生测试关键场景提取和识别

祖 晖,龙 洋,韩庆文   

  1. 1.招商局检测车辆技术研究院有限公司,重庆 401122; 2.重庆理工大学,重庆 400054;3.重庆大学,重庆 400044; 4.重庆高新区城市建设事务中心,重庆 40236
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:祖晖,男,博士,高级工程师,主要从事智能车测试、智能交通研究,Email:447410942@qq.com;通讯作者 韩庆 文,女,博士(后),副教授,主要从事车辆网和通信研究,Email:hqw@cqu.edu.cn。

Test-based extraction and identification of key scenarios for digital twins of intelligent networked vehicles

  • Online:2023-02-16 Published:2023-02-16

摘要: 场景生成是智能网联汽车数字孪生(DT)测试面临的关键问题之一,场景的典型性 是决定测试有效性的关键。智能网联汽车的测试场景源自真实车辆行驶数据,提出了一种 DT 测试场景生成方法,基于路侧雷达采集的局部道路车辆行驶数据提取典型测试场景,以 FCW、 LCW和 ICW 3种典型应用为基础,建立基于碰撞风险因素和交通质量因素的场景典型性评价 方法,构建 LSTMAEAttention模型实现典型场景识别。实验结果表明,提出的方法能够有效评 价场景典型性,并有效识别典型场景,为测试场景库的构建提供了有效支撑。

关键词: 数字孪生, 典型场景, 识别

Abstract: Scenario generation is one of the key problems in digital twin (DT) technology, and the typicality of scenarios is the key to test effectiveness. The test scenarios of an intelligent networked vehicle are derived from real vehicle driving data. This paper proposes a new DT test scene generation method which extracts typical test scenes based on local road vehicle driving data collected by roadside radar, establishes a typical scene evaluation method of collision risk factors and traffic quality factors on the basis of the three typical applications of FCW, LCW and ICW, and builds an LSTM-AE-Attention model to identify these critical scenarios. The experimental results show that the constructed model can effectively evaluate and identify typical scenes, which provides effective support for the construction of the test scene library.

中图分类号: 

  • TN92