重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 1-8.

• 特约专稿 •    下一篇

一种基于指纹定位的高精度农田节点定位算法

臧英凯,韩 笑,陈金超   

  1. (1.北京信息科技大学 自动化学院,北京 100192; 2.国家农业信息化工程技术研究中心,北京 100097; 3.农业农村部 农业信息数字乡村技术重点实验室,北京 100097; 4.农芯科技有限责任公司,北京 100097)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:臧英凯,男,硕士研究生,主要从事无线传感器网络定位研究,Email:1023755932@qq.com;通信作者 赵春江, 男,中国工程院院士,博士生导师,主要从事农业信息技术与精准农业技术研究,Email:zhaocj@nercita.org.cn。

A high accuracy node location algorithm based on fingerprint location algorithm for farmland

  • Online:2023-11-20 Published:2023-11-20

摘要: 针对农田无线传感器网络信号易受开放环境影响、节点定位存在区域空缺导致定 位精度低的问题,提出一种基于指纹定位的高精度农田节点定位算法。通过采集农田网络信号 数据,构建基于信号、坐标双尺度的 Kmeans聚类指纹;针对开放农田环境因素造成的数据波 动,利用 XGBoost算法建立接收信号强度(RSSI)与节点位置之间的非线性映射模型,通过接收 的信号强度指纹匹配粗定位节点位置;根据待测点与粗定位区域距离关系,进一步引入加权几 何优化算法二次定位待测点,缩进定位区域实现节点精确定位。实验结果表明:在 80%分位 处,研究算法定位误差小于 1.05m,较对比算法定位精度更高、时效性更强,能够为农田无线传 感器网络定位系统提供参考。

关键词: 农田无线传感器网络, 指纹定位, XGBoost, RSSI

Abstract: Aiming at the problem that the signal of farmland wireless sensor network (WSN) is susceptible to complex environment and the regional vacancies existing in node localization leads to low localization accuracy,a high-precision farmland node positioning algorithm based on fingerprint positioning is proposed.By collecting farmland network signal data,a K-means clustering fingerprint based on signal and coordinate double ruler is constructed; for data fluctuations caused by environmental factors in open farmland,a nonlinear mapping model between received signal strength (RSSI) and node location is established by XGBoost algorithm,and the received signal strength fingerprint matches the coarse localization node location; according to the distance relationship between the point to be measured and the coarse localization area,the weighted geometric optimization algorithm is introduced to locate the point to be measured twice and indent the positioning area to achieve precise positioning of the node.The experimental results show that the localization error of the research algorithm is less than 1.05 m at 80% quantile,which is more accurate and time-efficient than the comparison algorithm.The algorithm can provide a high-precision basic model for the farmland wireless sensor network positioning system.

中图分类号: 

  • S126