重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 156-165.

• “扩展现实(XR)理论与技术及应用”专栏 • 上一篇    下一篇

融合图卷积网络的花样滑冰动作识别方法

温雪岩,李 祯,谷训开   

  1. (东北林业大学 计算机与控制工程学院,哈尔滨 150040)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:温雪岩,男,硕士,副教授,主要从事计算机视觉研究,Email:wenxy2005@nefu.edu.cn。

A figure skating action recognition method incorporating graph convolutional networks

  • Online:2023-11-20 Published:2023-11-20

摘要: 针对花样滑冰运动中动作特征复杂、特征提取不全面和现有的动作识别方法识别 准确率不高的问题,提出了共享多分支特征和注意力的多尺度时空图卷积网络的花样滑冰动作 识别方法。使用 OpenPose算法提取人体运动的骨骼点数据,消除噪声干扰;其次,改进通道注 意力结构,改进后的注意力机制使模型提取更全面、关键的特征;构建融合注意力机制的多尺度 时空图卷积网络,提取时序特征更完整;最后,提取多分支特征融合后的共享特征输入网络,使 模型共享数据的同时挖掘语义特征。结果表明所提模型在花样滑冰 30种动作类型的 FSD10 数据集的识别准确率为 64.5%。与 STGCN和 CTRGCN方法相比,该算法的准确率均有提升, 说明对花样滑冰动作识别效果更好。

关键词: 图卷积网络, 动作识别, 注意力机制, 共享特征, 花样滑冰, 多尺度卷积

Abstract: To address the problems of complex action features,incomplete feature extraction and low recognition accuracy of existing action recognition methods in figure skating,a multi-scale spatio-temporal graph convolutional network sharing multibranch features and attention is proposed for action recognition in figure skating.First,the OpenPose algorithm is employed to extract skeletal point data of human motion to eliminate noise interference; second,the attention structure of the channel is improved,and the improved attention mechanism enables the model to extract more comprehensive and critical features; then,the multi-scale spatio-temporal graph convolution network with fused attention mechanism is constructed to extract more complete temporal features; finally,the shared features are extracted and fused into the network to allow the model to share data while mining semantic features.The results show that the recognition accuracy of the FSD-10 dataset with 30 types of figure skating movements is 64.5%.Compared with both ST-GCN and CTR-GCN methods,the algorithm achieves higher accuracy in all cases,indicating its effectiveness in the action recognition in figure skating.

中图分类号: 

  • TP391.41