重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 239-246.

• 信息·计算机 • 上一篇    下一篇

克服可见性约束的临时道路局部路径规划算法

丁炳超,王立勇,张 政   

  1. (北京信息科技大学 现代测控技术教育部重点实验室,北京 100192
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:丁炳超,男,硕士研究生,主要从事自动驾驶研究,Email:nageshuidbc@outlook.com;通信作者 王立勇,男,教授, 主要从事车辆动力学模型建模及控制与自动驾驶研究,Email:wangliyong@bistu.edu.cn。

Local path planning algorithm to overcome visibility constraints under temporary roads

  • Online:2023-11-20 Published:2023-11-20

摘要: 系统安全性是自动驾驶相关领域研究的首要前提。局部路径规划算法依据局部环 境信息进行路径规划,确保车辆顺利通过特定区域避障,保障自动驾驶车辆安全。为解决由于 相机可视范围有限而导致的弯道路径规划失败问题,在原 Delaunay三角剖分路径规划算法的基 础上,通过弯道区域单边锥桶平移与曲线拟合实现局部路径规划,保证无人驾驶车辆行驶安全。 实验结果表明:弯道行驶过程中的规划成功率由原来的 36.6%提升到了 92.4%,单次路径规划 平均时间为 0.264ms,比原算法降低 13.7%,改进后的 Delaunay三角剖分算法能够在单侧锥桶 数量不足时提高路径规划成功率,并且在一定程度上保证了路径规划的时效性,保障无人驾驶 车辆在弯道的安全行驶。

关键词: 临时道路, 改进 Delaunay三角剖分, 弯道区域路径规划

Abstract: System safety is the primary premise of autonomous driving related research.The local path planning algorithm makes path planning based on local environmental information to ensure that vehicles can successfully pass through specific areas to avoid obstacles and ensure the safety of autonomous vehicles.In order to solve the problem of curve path planning failure caused by the limited visual range of the camera,based on the original Delaunay triangulation path planning algorithm,unilateral cone bucket translation and curve fitting are added to the curve area to realize local path planning,so as to ensure the driving safety of unmanned vehicles.The experimental results show that the planning success rate in the curve driving process is increased from 36.6% to 92.4%,and the average time of a single pathing is 0.264 ms,which is 13.7% less than the original algorithm.The improved Delaunay triangulation algorithm can improve the path planning success rate when the number of unilateral cone barrels is insufficient.In addition,it improves the timeliness of path planning to a certain extent and ensures the safe driving of unmanned vehicles on curves.

中图分类号: 

  • TP249