重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 255-262.

• 电气·电子 • 上一篇    下一篇

IPOABP神经网络锂电池 SOH估算

赵 辉,朱文彬,岳有军   

  1. (天津理工大学 电气工程与自动化学院 天津市复杂系统控制理论及应用重点实验室,天津 300384)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:赵辉,男,博士,教授,主要从事复杂系统智能控制理论及应用研究,Email:zhaohui3379@126.com;朱文彬,男, 硕士研究生,主要从事动力电池状态研究,Email:1920056768@ qq.com。

IPOA-BP neural network SOH estimation of lithium batteries

  • Online:2023-11-20 Published:2023-11-20

摘要: 为提高锂电池 SOH的估算精度,搭建了一种基于改进鹈鹕优化算法(POA)结合反 向传播(BP)神经网络的估算模型。通过 NASA公开数据集,提取了多组与锂电池 SOH相关的 健康因子,并进行相关性分析,选取相关性较好的健康因子作为模型输入。通过改进后的 POA 算法对 BP神经网络的权值和阈值进行寻优。将所提算法与 BP神经网络、粒子群优化算法 (PSO)结合 BP神经网络、POA算法结合 BP神经网络方法进行比较,仿真结果表明:所提方法 的均方根误差更小,决定系数更高,具有更好的实际应用价值。

关键词: 锂离子电池, 健康状态, 改进鹈鹕优化算法, BP神经网络

Abstract: Lithium battery health status (SOH) is the basis for stable battery operation.Improving the accuracy of SOH estimation of lithium batteries can effectively improve their operational reliability.In order to improve the accuracy of SOH estimation of lithium batteries,an estimation model based on improved Pelican optimization algorithm (POA) combined with back propagation (BP) neural network is built.Firstly,several groups of health factors related to lithium battery SOH are extracted through NASA public data set,and a correlation analysis is made,and health factors with good correlation are selected as model inputs.Then the weights and thresholds of BP neural network are optimized by the improved POA algorithm.Compared with BP neural network,particle swarm optimization algorithm (PSO) combined with BP neural network and POA algorithm combined with BP neural network,the proposed method has a lower root-mean-square error and a higher determination coefficient,and thus possesses more practical application values.

中图分类号: 

  • TM912