重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 28-37.

• 车辆工程 • 上一篇    下一篇

采用双向 LSTM自编码器的驾驶风格谱聚类识别研究

梁 科,陈华晟,潘明章   

  1. (1.广西大学 机械工程学院,南宁 530004; 2.广西玉柴机器股份有限公司 玉柴工程研究院,南宁 530007)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:梁科,男,博士,讲师,主要从事人工智能研究,Email:LK0035@gxu.edu.cn;通信作者 叶宇,男,中级工程师,主 要从事智能网联研究,Email:yeyu@yuchai.cn。

Study of spectral clustering using bi-directional LSTM autoencoder for driving style recognition

  • Online:2023-11-20 Published:2023-11-20

摘要: 不同驾驶风格的分类对驾驶安全、道路设计和燃油经济性具有深远的影响。考虑到 驾驶风格受驾驶员即时操作和前后操作的影响,提出了一种采用双向 LSTM自编码器的谱聚类模 型对驾驶风格进行识别,以反映驾驶数据时序性对驾驶风格识别的影响。首先利用鲸鱼优化算法 对驾驶过程生成的自然驾驶数据进行特征选择,再利用基于双向 LSTM的自编码器模型,获得用 于谱嵌入的特征值和特征向量,并最终通过谱聚类对驾驶风格进行识别。应用本文中所提出的方 法对真实驾驶数据进行比较分析。结果表明:该方法在聚类的精确性优于 SOM和 LSTM谱聚类方 法。此外,该方法还能在降低数据特征的情况下有效地识别驾驶员的驾驶风格,并反映驾驶员的 操作策略。

关键词: 驾驶风格识别, 双向 LSTM, 自编码器, 谱聚类

Abstract: The recognition of different driving styles has profound implications for driving safety,road design and fuel economy.Considering that driving styles are affected by drivers’ immediate and back-and-forth operations,this paper proposes a bi-directional LSTM autoencoder-based spectral clustering model for driving style recognition,in order to address the influence of driving data temporality on driving style recognition.Firstly,a whale optimization algorithm is used to select features from the real-time data from the driving process.Secondly,an autoencoder-based bi-directional LSTM model is built to obtain the eigenvalues and eigenvectors for spectral embedding.Finally,the driving styles are recognized by spectral clustering.The analysis of the real-time driving data shows the accuracy of the proposed method is higher than that of SOM and LSTM-based spectral clustering.Besides,the proposed method can effectively identify drivers’driving style and reflect their operating strategies with fewer features.

中图分类号: 

  • U471