重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (12): 130-137.

• “精密工程测量技术与仪器”专栏 • 上一篇    下一篇

一种改进自编码器的跨域轴承故障诊断

董绍江, 廖俊波, 周存芳   

  1. 重庆交通大学机电与车辆工程学院
  • 出版日期:2024-02-04 发布日期:2024-02-04
  • 作者简介:董绍江,男,博士,教授,博士生导师,主要从事旋转机械智能故障诊断研究,E-mail:dongshaojiang100@163.com; 廖俊波,男,硕士研究生,主要从事旋转机械故障诊断研究,E-mail:2249934510@qq.com

An improved autoencoder for cross-domain bearing fault diagnosis

  • Online:2024-02-04 Published:2024-02-04

摘要: 针对轴承故障诊断中特征提取困难、数据中含有大量噪声以及在单一工况数据下训练的模型无法在复杂工况下实现有效故障诊断的问题,提出了一种基于改进卷积稀疏自编码器(improved convolutional sparse auto encoder,ICSAE)的变工况轴承故障诊断方法。首先,在卷积自编码中增加稀疏性约束条件,提高模型有效特征提取能力,并对于输入信号和重构信号的重构误差通过最大均值差异(MMD)结合均方误差(MSE)进行构建,提高模型的泛化能力和抗噪能力。然后,结合领域自适应方法,利用MMD损失减小两域特征分布差异,有效提高跨域诊断性能。使用CWRU数据集和JNU数据集验证所提方法在变工况下对于滚动轴承的故障诊断效果,结果表明在变工况迁移下,测试模型在CWRU数据集和JNU数据集的诊断准确率分别能达到99.81%和98.32%,提出的模型能够有效应对复杂工况下的滚动轴承故障诊断

关键词: 轴承故障诊断, 自动编码器, 卷积神经网络, 领域自适应

Abstract: To overcome the difficulty in feature extraction in bearing fault diagnosis, large amounts of noises in data and inability of models trained on individual working conditions to achieve effective fault diagnosis under complex ones, a bearing fault diagnosis method with variable working conditions based on Improved Convolutional Sparse Auto Encoder (ICSAE) is proposed in this paper. Firstly, sparsity constraint conditions are added to convolutional self-coding to improve the model’s capacity of effective feature extraction, and the reconstruction errors of input signals and reconstructed signals are constructed through a combination of maximum mean difference (MMD) and mean square error (MSE) to improve the model’s generalization ability and anti-noise ability. Then, the cross-domain diagnosis performance is effectively improved by domain adaptive method and MMD loss to reduce the difference of feature distribution between the two domains. To verify the effectiveness of this method, CWRU and JNU data sets are employed for rolling bearings under varying working conditions. The experimental results show the diagnostic accuracy of CWRU data set and JNU data set reaches 99.81% and 98.32% respectively, and the proposed model effectively performs the fault diagnosis of rolling bearings under complex working conditions.

中图分类号: 

  • TH133.3