重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (12): 210-221.

• 智能技术 • 上一篇    下一篇

前背景信息一致的边界框弱监督息肉分割网络

龙建武, 刘东, 宋鑫磊   

  1. 重庆理工大学计算机科学与工程学院
  • 出版日期:2024-02-04 发布日期:2024-02-04
  • 作者简介:龙建武,男,博士,副教授,主要从事图像处理与机器学习研究;通信作者 刘东,男,硕士研究生,主要从事弱监督图像分割研究,E-mail:raydonld@hotmail.com

Weak supervision polyp segmentation network with consistent front background information with boundary boxes

  • Online:2024-02-04 Published:2024-02-04

摘要: 准确的息肉分割对结直肠癌的诊断和治疗具有重要意义。由于标注准确的像素级掩码成本很高,现在的息肉分割方法严重受到像素标注短缺的影响,而粗略的边界框标注更易获得。因此提出一个通用性高、即插即用的弱监督组件PolypBox,其可以将现有全监督的息肉分割方法转换成仅使用边界框标注的息肉分割方法。该模块由掩码投影损失、像素表示模块、前背景搜索损失和邻域像素一致性损失组成。首先设计像素表示模块从特征图中学习每个像素的特征表示(embedding),根据边界框的位置信息,使用K-Means分别聚类属于前背景的多个原型;然后提出前背景搜索损失将边框内的像素点与前背景的原型进行搜索匹配建立约束;在边界框内部设计掩码投影损失约束模型预测息肉的位置,最后提出邻域像素一致性损失,令具有邻域相似的像素点对的息肉预测结果保持一致。为验证算法的有效性,在CVC-300和Kvasir等4个具有挑战性的数据集和mean Dice等6个指标上与主流息肉分割网络进行对比,其mean Dice达到0.810,有着不输于目前主流全监督息肉分割方法的分割性能,同时验证了该方法的通用性

关键词: 息肉分割, 边界框, 弱监督, 前背景搜索, 对比学习, 原型学习

Abstract: Accurate polyp segmentation is important for the diagnosis and treatment of colorectal cancer. Due to the high cost of pixel-level mask, current polyp segmentation suffers a shortage of pixel markers while rough boundary box annotation (BBox) is easier to obtain. Therefore, a highly versatile plug-and-play weak supervision method PolypBox, which replaces the existing fully supervised method with the one only marked with a BBox, is proposed. The module consists of mask projection loss, pixel representation module, front background search loss and neighborhood pixel consistency loss. First, the pixel representation module is designed to learn the embedding of each pixel. Multiple prototypes of the front background are generated by K-Means based on the positioning information of boundary boxes. Then, the front background search loss is proposed to match pixels in BBox with the prototypes and build constraints. The mask projection loss is designed to predict the polyp inside boundary boxes. Finally, the neighborhood pixel consistency loss is proposed to make the prediction consistent for pixel pairs with similar neighborhoods. In comparing the mainstream polyp segmentation network in six major indexes, experimental results on four challenging datasets (CVC-300, and Kvasir, etc.) show that mean Dice reaches 0.810, demonstrating the superior performances of weak supervision polyp segmentation network.

中图分类号: 

  • TP391