重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 173-182.doi: 10.3969/j.issn.1674-8425(z).2023.02.020

• 信息·计算机 • 上一篇    下一篇

融合 MS3DCNN和注意力机制的高光谱图像分类

吴庆岗,刘中驰,贺梦坤   

  1. (郑州轻工业大学 计算机与通信工程学院,郑州 450002)
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:吴庆岗,男,博士,副教授,主要从事遥感图像处理研究,Email:wuqinggang323@126.com。

Fusion of MS3D-CNN and attention mechanism for hyperspectral image classification

  • Online:2023-03-21 Published:2023-03-21

摘要: 针对高光谱遥感图像分类中空间信息利用不充分、样本标记数量不足的问题,提出 一种基于多尺度 3DCNN和卷积块注意力机制的高光谱图像分类方法。采用特征映射方式从 不同感受野充分挖掘并融合高光谱图像的空间特征和光谱特征,对融合后的空谱特征进行卷积 块注意力机制处理;通过残差思想构建深层网络,采用 Dropout方法处理过拟合问题,最后通过 Softmax分类器进行分类。在 IndianPines、PaviaUniversity和 SalinasValley3个高光谱数据集上 进行大量实验,分类结果表明:所提方法优于其他经典方法。

关键词: :高光谱图像分类, 多尺度三维卷积网络, 注意力机制, 残差网络

Abstract: Aiming at the problems of insufficient utilization of spatial information and a shortage of sample labels in hyperspectral remote sensing image classification, this paper proposes an algorithm to classify hyperspectral images based on multi-scale 3D-CNN (MS3D-CNN) and Convolutional Block Attention Mechanism (CBAM). The feature mapping approach is employed to fully explore and fuse spatial and spectral features of hyperspectral images from different receptive fields, which are further processed by CBAM. After that, the deep neural network is constructed based on the idea of Residual Network (ResNet), and the Dropout method is encompassed to deal with the over-fitting problem. Finally, the processed features are classified by Softmax classifier. Extensive experiments are conducted on three hyperspectral datasets of Indian Pines, Pavia University and Salinas Valley, and the classification results show that the proposed method is superior to other classical methods.

中图分类号: 

  • TP751