重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 197-205.doi: 10.3969/j.issn.1674-8425(z).2023.02.022

• 信息·计算机 • 上一篇    下一篇

一种结合注意力机制的IGBT失效预测方法研究

蒋闯, 艾红, 陈雯柏   

  1. 北京信息科技大学 自动化学院,北京 10019
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:蒋闯,男,硕士,主要从事机器学习和寿命预测研究,Email:jiang_jc163@163.com;通讯作者 艾红,女,教授,主 要从事故障诊断与寿命预测研究,Email:hongai@bistu.edu.cn

Research on IGBT failure prediction method combined with attention mechanism

  • Online:2023-03-21 Published:2023-03-21

摘要: 针对 IGBT的可靠性分析问题,提出一种长短时记忆网络和卷积神经网络为骨干网 络的深度学习模型,将其应用于 IGBT失效预测。模型中,引入的注意力机制给予不同维度的特 征的重要作用部分更大的权重,以加强重要信息的影响。同时,网络结构的交叉连接充分挖掘 不同层级的特征,融合的多层级特征提升了模型的泛化性与鲁棒性。在美国国家宇航局的 IG BT加速老化数据集上进行验证,结果表明:相比于当前的主流模型,注意力机制以及交叉连接 2 种方案预测准确率的均方根误差分别提升 127%和 0.78%。基于此,进一步提出基于注意力 机制与带有跳连结构 LSTMCNN相融合的网络模型,预测准确率的均方根误差提升 268%。 结论表明:在 IGBT的失效预测中,注意力机制与交叉连接分别从不同的角度提升模型的泛化性 与鲁棒性,充分表明所提方法的有效性。

关键词: 绝缘栅双极晶体管, 失效预测, 加速老化, 长短期记忆网络, 注意力机制, 卷积神经网络

Abstract: In recent years, the insulated gate bipolar transistor (IGBT) has been widely used in rail transportation, new energy sources and other fields. Its reliability research is currently a hot topic for scholars. Aiming at the reliability analysis of IGBT, this paper proposes a deep learning model based on long and short-term memory network and convolutional neural network (LSTM-CNN) as the backbone network for IGBT failure prediction. In the model, the introduced attention mechanism gives a higher weight of dominant factors to the features of different dimensions so as to strengthen the influence of important information. At the same time, cross-connection of the network structure fully extracts the features of different levels. The fused multi-level features improve the generalization and robustness of the model. This method is validated on IGBT accelerated aging dataset of National Aeronautics and Space Administration. The experimental results show that, compared with the current mainstream models, the root-mean-square error of the prediction accuracy of the attention mechanism and cross-connection improves by 1.27% and 0.78% respectively. Based on this, a network model based on the fusion of attention mechanism and LSTM-CNN with jump structures is further proposed, and its root-mean-square error of the prediction accuracy increases by 2.68%. It can be concluded that in the failure prediction of IGBT, attention mechanism and cross-connection improve the generalization and robustness of the model from different perspectives, which fully indicates the effectiveness of the proposed method.

中图分类号: 

  • TP181