重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 260-271.doi: 10.3969/j.issn.1674-8425(z).2023.02.029

• 电气·电子 • 上一篇    下一篇

含电动汽车智慧楼宇的多时间尺度MPC能量管理策略

姜晓锋, 魏巍, 王永灿   

  1. 1.国网四川省电力公司电力科学研究院,成都 610041; 2.西南交通大学 电气工程学院,成都 61175
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:姜晓锋,男,博士,工程师,主要从事交通能源融合、能源互联网运行与规划相关研究,Email:jiangxf2020@163. com;通讯作者 贾世成,男,硕士研究生,主要从事智慧楼宇能量优化管理相关研究,Email:18482240703@ 163.com。

Multi-time scale MPC energy management strategy for smart buildings with electric vehicles

  • Online:2023-03-21 Published:2023-03-21

摘要: 针对含电动汽车智慧楼宇,在考虑电动汽车的出行特性下,提出一种基于模型预测 控制的多时间尺度能量管理策略。首先,分析电动汽车出行特性,利用蒙特卡洛抽取电动汽车 到达、离开时刻,以及充电始末荷电状态。其次,建立智慧楼宇的分布式电源、储能及可控负荷 模型,基于混合整数二次规划,提出日前能量管理策略。然后,提出基于模型预测控制的日内滚 动优化策略,实现对日前运行方案的动态修正。最后,与多种能量管理策略对比,表明所提策略 可有效解决由日前预测误差导致的联络线功率波动问题,提升系统在预测不确定场景下的鲁棒 性,降低系统运行成本,提高经济性。

关键词: 智慧楼宇, 电动汽车, 模型预测控制, 能量管理, 多时间尺度

Abstract: Considering travel characteristics of electric vehicles, this paper proposes a multi-time scale energy management strategy based on model predictive control for smart buildings with electric vehicles. Firstly, travel characteristics of electric vehicles are analyzed, and Monte Carlo is used to extract the arrival and departure time of electric vehicles, as well as the loading state at the beginning and end of charging. Secondly, the distributed power supply, energy storage and controllable load models of smart buildings are established, and the day-ahead energy management strategy is proposed based on mixed integer quadratic programming. Then, the intra-day rolling optimization strategy based on model predictive control is proposed to realize the dynamic correction of the day-ahead operation scheme. Finally, compared with a variety of energy management strategies, it is shown that the proposed strategy can effectively solve the problem of tie line power fluctuation caused by the day-ahead prediction error, improve the robustness of the system in the scenario of prediction uncertainty, reduce cost of the system, and improve the economy of the system.

中图分类号: 

  • TM933