重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 86-96.doi: 10.3969/j.issn.1674-8425(z).2023.02.010

• “新能源汽车能量管理技术研究”专栏 • 上一篇    下一篇

加权双Q学习算法优化的PHEV能量管理策略研究

郭玉帆, 沈世全, 刘冠颖   

  1. 1.昆明理工大学 交通工程学院,昆明 650500; 2.云南开放大学 公共基础教学部,昆明 650500)
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:郭玉帆,女,硕士研究生,主要从事新能源汽车节能控制研究,Email:guoyufan@stu.kust.edu.cn;通讯作者 刘冠 颖,女,博士研究生,主要从事智能网联汽车优化控制技术研究,Email:liuguanying@stu.kust.edu.cn。

Research on PHEV energy management strategy optimized by weighted double-Q learning algorithm

  • Online:2023-03-21 Published:2023-03-21

摘要: 插电式混合动力汽车(pluginhybridelectricvehicles,PHEV)具有节能、环保、无续 航里程焦虑的优点,是汽车领域发展的重点方向。但 PHEV整车控制策略较为复杂,涉及到多 动力源的能量分配,如何设计高效可靠的能量管理策略已经成为 PHEV研究的热点与难点。为 了提升 PHEV的燃油经济性和整车性能,提出了一种基于加权双 Q学习的插电式混合动力汽车 能量管理控制策略,采用加权双 Q学习算法求解 PHEV的能量分配。为了验证所提策略的有效 性及可靠性,在 Matlab/Simulink中搭建整车模型并进行仿真验证。研究结果表明:本文所提策 略相比基于规则的 CD/CS策略,燃油经济性在不同的行驶工况下平均提高 6.38%;在不同的工 况下,基于加权双 Q学习策略的燃油经济性可达随机动态规划策略的 98%,验证了本文所提策 略具有较好的燃油经济性及工况适应性。

关键词: 能量管理策略, 加权双 Q学习, 混合动力汽车, Q学习

Abstract: As the key direction of development in the automobile field, Plug-in hybrid electric vehicles (PHEV) are energy-saving, environmental friendly and free from anxieties of endurance mileage. However, the control strategy of PHEV is relatively complex, involving the energy distribution of multiple power sources. How to design an efficient and reliable energy management strategy has become a hot and difficult issue in PHEV research. In order to improve the fuel economy and vehicle performance of PHEV, a PHEV energy management control strategy based on weighted double-Q learning is proposed, and the weighted double-Q learning algorithm is used to solve the energy distribution of PHEV in this paper. Furthermore, a vehicle model is built and simulated in Matlab/Simulink to verify the effectiveness and reliability of the proposed strategy. The results show that, compared with the rule-based CD/CS strategy, the fuel economy of the proposed strategy improves by 6.38% on average under different driving conditions. The fuel economy of the weighted double-Q learning strategy can reach 98% of that of the stochastic dynamic programming strategy under different driving conditions. The above results verify that the proposed strategy has good fuel economy and adaptability to different driving conditions.

中图分类号: 

  • U469.72