重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (3): 204-211.

• 信息·计算机 • 上一篇    下一篇

SARIMA-LSTM组合模型在铁路疫情短时客流的预测研究

魏姝瑶,张 瑾   

  1. 昆明理工大学 交通工程学院,昆明 650504
  • 出版日期:2023-04-26 发布日期:2023-04-26
  • 作者简介:魏姝瑶,女,硕士研究生,主要从事交通运输与管理研究,Email:874834265@qq.com;通信作者 张瑾,女,副教 授,主要从事交通运输与管理研究,Email:55715389@qq.com。

Prediction research of SARIMA-LSTM combination modelin the short-term railway passenger flow during epidemics

  • Online:2023-04-26 Published:2023-04-26

摘要: 针对新型冠状病毒肺炎疫情这类突发性公共卫生事件对铁路短时客流造成的巨大 扰动问题,分析疫情下的春运周期性、季节性的非平稳时间序列日客流曲线,构建基于 SARIMA LSTM的组合模型。利用 SARIMA模型进行线性部分预测,LSTM滚动优化模型进行非线性部 分预测,将 2个预测结果代入注意机制模块加权求和,引入 GRU门控循环单元辅助验证。通过 对实例研究分析,结果表明:SARIMALSTM组合模型的预测结果控制性好,准确率高,可为疫情 突发事件短时客流数据集的预测提供理论依据。

关键词: 铁路运输, 短时客流预测, SARIMALSTM组合模型, 滚动优化算法, 注意机制

Abstract: Aiming at the huge disturbance caused by sudden public health events such as the COVID-19 to the short-term railway passenger flow, this paper constructs a combination model based on SARIMA-LSTM to analyze the daily passenger flow curve of the periodic and seasonal non-stationary time series during Spring Festival transportation under the epidemic situation.The SARIMA model is used to predict the linear part, and the LSTM rolling optimization model is used for nonlinear prediction. Finally, the two prediction results are put into the weighted sum of the attention mechanism module, and the GRU gated loop unit is introduced to assist the verification. The analysis shows that the prediction results of SARIMA-LSTM combination model have good control and high accuracy, which can provide theoretical basis for the prediction of the short-term passenger flow data set of epidemic emergencies.

中图分类号: 

  • U29