重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (3): 212-221.

• 信息·计算机 • 上一篇    下一篇

采用中心平衡优化的表冷系统预测控制研究

卢志敏,饶 伟,江 琳   

  1. (1.龙岩烟草工业有限责任公司,福建 龙岩 364021; 2.重庆理工大学 两江人工智能学院,重庆 401135; 3.重庆太和空调自控有限公司,重庆 400030)
  • 出版日期:2023-04-26 发布日期:2023-04-26
  • 作者简介:卢志敏,男,硕士,工程师,主要从事烟草工艺设备研究,Email:lzm23105@fjtic.cn;通信作者 王华秋,男,博士, 教授,主要从事节能优化与智能控制研究,Email:wanghuaqiu@163.com。

Research on predictive control of the surface cooling systemusing KMedoids equilibrium optimization

  • Online:2023-04-26 Published:2023-04-26

摘要: 根据室外温度和相对湿度环境变量,采用极限学习机(extremelearningmachine, ELM)搭建空调表冷系统室内温湿度预测模型,解决了空调表冷阀门协调控制问题,采用斐波拉 契(Fibonacci)搜索算法优化了极限学习机的隐含层节点数,提出了斐波拉契极限学习机 (FELM),从而提高了预测模型的精度。传统的平衡优化算法(EO)收敛速度慢,且容易陷入局 部极小,将 K中心聚类算法(KMedoids)嵌入到平衡优化算法中,提高了优化算法的性能。利用 中心平衡优化算法(KEO)滚动优化得到表冷系统 3个阀门的控制量,即主表冷阀、副表冷阀和 电动三通阀的开度。仿真实验表明:与传统的 ELM预测控制算法相比,KEOFELM预测控制具 有更高的稳定性和跟踪性,以及更好的节能效果。

关键词: 空调表冷系统, 斐波拉契搜索, 极限学习机, 预测控制, 中心平衡优化算法

Abstract: According to the environment variables of outdoor temperature and relative humidity, this paper uses the Extreme Learning Machine (ELM) to build an indoor temperature and humidity prediction model of the air conditioning surface cooling system to solve its coordinated valve control problem.The number of hidden layer nodes of ELM is optimized by using the Fibonacci search algorithm. The Fibonacci extreme learning machine (FELM) is proposed to improve the accuracy of the prediction model.The traditional equilibrium optimization (EO) algorithm has a slow convergence speed and is easy to fall into local minima.The KMedoids clustering algorithm is embedded into the equilibrium optimization algorithm to improve the performance of the optimization algorithm.Then, the KMedoids equilibrium optimization (KEO) algorithm is used to conduct rolling optimization of the control quantity of the three valves of the surface cooling system, such as the opening of the main surface cooling valve, the auxiliary surface cooling valve and the electric three-way valve. The simulation results show that, compared with the traditional ELM predictive control algorithm, KEO-FELM predictive control has higher stability and tracking abilities with better energy-saving effect.

中图分类号: 

  • TP391.9