重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (3): 259-263.

• 数学·统计学 • 上一篇    下一篇

关于对偶视角下的锥体定理

胡正宇,张 诚   

  1. 重庆理工大学 数学科学研究中心,重庆 40005
  • 出版日期:2023-04-26 发布日期:2023-04-26
  • 作者简介:胡正宇,男,博士,教授,主要从事代数几何(高维分类理论)研究,Email:zhengyuhu16@gmail.com;张诚,男,硕 士研究生,主要从事代数几何研究,Email:zhangcheng@2020.cqut.edu.cn。

On the cone theorem in the dual space

  • Online:2023-04-26 Published:2023-04-26

摘要: 锥体定理表明曲线锥中与典范除子相交数为负的部分局部上是由有限条极端射线 (extremalray)生成的。而在对偶空间上看,锥体定理可以用除子的语言描述出来,即 nef除子 锥关于典范除子的可见边界局部是一个有理多面体,而上述的极端射线对应的正是这个有理多 面锥体的面。在假设典范环的有限生成性的前提下证明了对偶锥体定理。通过观察对偶性,给 出对偶锥体定理的一个更加几何化的证明而无需假定典范环的有限生成性。

关键词: 锥体定理, 典范除子, 极端射线, 有理多面体

Abstract: The cone theorem is one of the fundamental theorems of the minimal model program (MMP). The theorem states that the part of Mori’s cone whose intersection numbers are negative with the canonical divisor is locally generated by finite extremal rays.In the dual space, the cone theorem can be described in terms of divisors, which means the visible boundary of the nef cone with respect to the canonical divisor is a rational polytope, and those extremal rays correspond to the faces of the rational polytope. The dual cone theorem can be proved by assuming the finite generation of the canonical rings. By observing the above duality, a more geometric proof of the dual cone theorem is given without assuming the finite generation of the canonical rings.

中图分类号: 

  • O187.2