重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (3): 264-273.

• 能源动力环境 • 上一篇    下一篇

一种结合 ResNet和迁移学习的交通标志识别方法

徐慧智,闫卓远,常梦莹   

  1. 东北林业大学 交通学院,哈尔滨 150040
  • 出版日期:2023-04-26 发布日期:2023-04-26
  • 作者简介:徐慧智,男,博士,副教授,主要从事交通环境感知理论与方法研究,Email:stedu@126.com

A traffic sign recognition methodbased on ResNet and transfer learning

  • Online:2023-04-26 Published:2023-04-26

摘要: 针对当前传统的交通标志识别算法训练耗时长、精度低等问题,提出了一种结合 ResNet和迁移学习的交通标志识别模型。首先在模型中引入已经在 ImageNet图像数据集上训 练好的 ResNet网络权重,冻结卷积层参数,将网络作为模型的特征提取器;其次为模型设计全 连接层,分别使用不同大小的数据集和数据扩充前后的数据集微调全连接层参数;然后设置不 同大小的学习率,在学习率固定和学习率衰减 2种条件下训练模型;最后在测试集上测试模型, 输出分类结果。测试结果表明,该方法对交通标志的识别准确率达到 97.60%,指示标志、警告 标志、禁令标志 3类交通标志的 F1得分分别达到 96.86%、99.37%、96.53%,说明该模型具有 较高的交通标志识别准确率。

关键词: 神经网络, 迁移学习, 交通标志, 图像识别

Abstract: In view of time-consuming training and low accuracy of the traditional traffic sign recognition algorithms, this paper proposes a traffic sign recognition model based on ResNet and transfer learning. Firstly, the ResNet network weight trained on ImageNet image data set is introduced into the model, the parameters of the convolutional layer are frozen, and the network is used as the feature extractor of the model. Secondly, a fully connected layer is designed for the model, and the parameters of the fully connected layer are fine-tuned by using the data sets of different sizes and the data sets before and after data augmentation. Then, different sizes of learning rates are set, and the model is trained under two conditions of fixed learning rate and decaying learning rate. Finally, the model is tested on the test set and the classification results are output.The test results show that the recognition accuracy of traffic signs by this method is 97.60%, and the F1 score of the three classes of traffic signs reach 96.86%, 99.37% and 96.53% respectively, including mandatory signs, warning signs and prohibition signs, which shows that the model has a high recognition accuracy of traffic signs.

中图分类号: 

  • U495