重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 196-203.

• 信息·计算机 • 上一篇    下一篇

基于注意力及特征融合的红外行人检测算法

邓天民,王 丽,刘旭慧   

  1. (重庆交通大学 交通运输学院,重庆 400074)
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:邓天民,男,博士,教授,主要从事交通大数据与交通环境感知研究.Email:dtianmin@cqjtu.edu.cn;通信作者 王 丽,女,硕士研究生,主要从事交通环境感知研究,Email:wangli12052021@163.com。

An infrared pedestrian detection algorithm based on attention and feature fusion

  • Online:2023-07-12 Published:2023-07-12

摘要: 针对红外图像行人检测算法中复杂背景行人误检率高、密集行人检测精度低以及 远景小目标行人漏检等问题,提出了一种基于注意力及特征融合的红外行人检测算法(attention andfeaturefusionyouonlylookonce,AFFMYOLO)。提出了一种注意力特征提取模块(attention featureextractionmodule,AFEM),融入网络主干部分,抑制无关背景信息,加强关键特征信息的 提取。设计了一种多尺度特征融合模块(Multiscalefeaturefusionmodule,MFFM),嵌入网络颈 部部分,实现不同尺度间特征信息的有效融合,增加大尺度检测层,加强目标检测器对远景小目 标行人的特征提取能力。在 FLIR数据集做验证实验,结果表明:AFFMYOLO取得了 89.1%的 平均精度,相比于基线算法 YOLOv5提高了 2.4%,AFFMYOLO具有更好的表现,对红外图像 行人的检测效果有明显提升。

关键词: 目标检测, 红外行人检测, 注意力机制, 多尺度特征融合, 多尺度特征检测

Abstract: Aiming at the problems of high false detection rate of pedestrians in a complex background,a low detection accuracy of dense pedestrians and missed detection of pedestrians with small distant targets in the infrared image pedestrian detection algorithm,this paper proposes an infrared pedestrian detection algorithm based on attention and feature fusion module-you only look once (AFFM-YOLO).Firstly,an attention feature extraction module (AFEM) is proposed,which is integrated into the backbone of the network to suppress irrelevant background information and enhance the extraction of key feature information.Secondly,a multi-scale feature fusion module (MFFM) is designed,which is embedded in the neck of the network to realize the effective fusion of feature information at different scales.Then,a large-scale detection layer is added to strengthen the feature extraction ability of the target detector for pedestrians with small targets in a long distance.Finally,the experimental results on FLIR data set show that the average accuracy of AFFM-YOLO reaches 89.1,which is 2.4% higher than that of the baseline algorithm YOLOv5.AFFM-YOLO has a better performance,with a significant improvement of the pedestrian detection effect in infrared images.

中图分类号: 

  • TP391.4