重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 212-221.

• 信息·计算机 • 上一篇    下一篇

基于多尺度混合注意力 LSTM雷达回波外推方法

刘瑞华,高 翔,邹洋杨   

  1. (重庆理工大学 两江人工智能学院,重庆 401135
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:刘瑞华,男,博士,副教授,硕士生导师,主要从事智能信息处理研究,Email:lruih@cqut.edu.cn;通信作者 邹洋 杨,女,博士,讲师,主要从事数据处理研究,Email:mathzyy@cqut.edu.Cn

A radar echo extrapolation method based on multi-scale mixed attention LSTM

  • Online:2023-07-12 Published:2023-07-12

摘要: 针对基于雷达回波图的短临天气预测准确度不高的问题,提出了多尺度混合注意 力长短时记忆网络模型。模型以长短时记忆网络为基础,设计引入辅助分支,提取增强图像的 全局信息。设计了混合注意力特征提取模块,提取数据的细粒度和粗粒度的信息。实验结果表 明:模型在 HSS和 CSI2种指标上优于 ConvLSTM、PredRNN、RAPNet等 9种模型。在 5、20、 40dBz情况下,比 PredRNN模型的 HSS指标分别提升了 1.02%、2.46%、7.94%,比 CSI指标 分别提升了 0.54%、2.29%、4.91%,改进明显。

关键词: 长短时记忆网络, 雷达回波, 注意力, 多尺度

Abstract: Aiming at the problem of low prediction accuracy of short-approaching weather based on radar echo images,this paper proposes a multi-scale mixed attention long short-term memory network model.On the basis of long short-term memory network,on the one hand,an auxiliary branch is introduced to enhance the extraction of global image information.On the other hand,a mixed attention feature extraction module is designed to extract the fine-grained and coarse-grained information of the image data.The experimental results show that the proposed network model is superior to 9 models such as Conv-LSTM,Pred-RNN and RAP-Net on the two indexes of HSS and CSI.Especially,compared with those of the Pred-RNN model in the case of 5 dBz,20 dBz and 40 dBz,the HSS index of the proposed model is improved by 1.02%,2.46% and 7.94% respectively,while the CSI index is improved by 0.54%,2.29% and 4.91%,indicating obvious improvement.

中图分类号: 

  • TP456