重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 101-109.

• “精密工程测量技术与仪器”专栏 • 上一篇    下一篇

不平衡转子系统弯扭耦合复杂故障智能诊断

李舜酩,陆建涛,沈 涛   

  1. 1.南京航空航天大学 能源与动力学院,南京 210016; 2.南通理工学院 汽车工程学院,江苏 南通 226002; 3.上海华为技术有限公司 智能汽车部,上海 201206)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介:李舜酩,男,博士,教授,主要从事复杂动态信号处理与振动故障诊断研究,Email:smli@nuaa.edu.cn。

Intelligent diagnosis of complex bending and torsional coupling faults of unbalanced rotor systems

  • Online:2023-08-15 Published:2023-08-15

摘要: 弯曲振动与扭转振动耦合在旋转机械实际运行中往往不可避免。考虑不平衡转子 不同复杂工况的弯扭耦合情况,利用深度学习技术的优势,构建了基于一维卷积神经网络的诊 断模型,提出了一种用于处理不平衡转子发生弯曲,扭转以及弯扭耦合振动情况的智能故障诊 断方法。分析了数据输入类型和 L2正则化对诊断的影响,优化了诊断模型以提高诊断精度,并 进行了试验验证。研究结果表明,该方法可以实现不同转速下,发生弯扭耦合振动时单种或多 种复合故障的智能诊断,获得比其他方法更好的诊断效果。

关键词: 转子系统, 弯扭耦合振动, 深度学习, L2正则化

Abstract: The coupling of bending vibration and torsional vibration often exists in the actual operation of rotating machinery. This paper considers the bending and torsional coupling of unbalanced rotors under different complex conditions, and utilizes the advantages of deep learning technology to construct a diagnosis model based on one-dimensional convolutional neural networks. An intelligent fault diagnosis method for handling the bending, torsion and bending torsional coupling vibration of the unbalanced rotors is proposed. The influence of data input type and L2 regularization on the diagnosis is analyzed, and the diagnosis model is optimized to improve the diagnosis accuracy. The research results indicate that this method can realize intelligent diagnosis of single or multiple composite faults when bending torsional coupling vibration occurs at different speeds, and achieve better diagnostic results than other methods.

中图分类号: 

  • TH17