重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 135-143.

• “精密工程测量技术与仪器”专栏 • 上一篇    下一篇

滚动轴承故障诊断的 TDDCCNN方法研究

王体春,解 缙,咸玉贝   

  1. (1.南京航空航天大学 机电学院,南京 210016; 2.上海民航华东空管工程技术有限公司,上海 201702)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介:王体春,男,博士,副教授,主要从事故障诊断及可拓理论研究,Email:wangtichun2010@nuaa.edu.cn。

Fault diagnosis methods of rolling bearings based on TD-DCCNN

  • Online:2023-08-15 Published:2023-08-15

摘要: 轴承的健康状态对于雷达驱动结构以及直升机传动机构等旋转机械的正常运作至 关重要,针对滚动轴承工况复杂,存在噪声,振动信号各故障标签样本不足且不平衡的特点,基 于扰动训练样本的可变形卷积和深度残差块结构,提出了一种改进一维卷积神经网络的滚动轴 承故障诊断方法。通过设置可变形卷积提高对故障局部特征提取的能力,引入改进的深度残差 块来提高模型的泛化能力和对训练数据的敏感性,在加入训练数据时,通过设置训练扰动层加 入扰动样本,提升模型的鲁棒性。以凯斯西储大学轴承数据集为实验数据集,分割训练集和测 试集,实验结果证明了所提方法的有效性,TDDCCNN算法在信噪比为 0的情况下仍可以达到 90.35%的平均准确率,与其他诊断算法相比有一定的优越性。

关键词: 故障诊断, 滚动轴承, 一维卷积神经网络, 可变形卷积, 扰动训练

Abstract:

The healthy state of bearings is very important for the normal operation of rotating machinery such as radar driving structure and helicopter transmission mechanism. Aiming at the characteristics of complex working conditions, noise, and insufficient and unbalanced samples of the fault labels of the vibration signals of rolling bearings, this paper proposes an improved one-dimensional convolution neural network fault diagnosis method for rolling bearings based on deformable convolution of the disturbance training samples and depth residual block structure. The deformable convolution is set to improve the ability of extracting local fault features, and the improved depth residual block is introduced to improve the generalization ability and sensitivity of the model to the training data. When the training data are fed, the training disturbance layer is set to add disturbance samples to improve the robustness of the model. The Case Western Reserve University bearing data set is used as the experimental data set to divide the training set and the test set. The experimental results prove the effectiveness of the proposed method. TD-DCCNN algorithm can still achieve an average accuracy of 90.35% when the signal-to-noise ratio is 0, which has certain advantages compared with other diagnostic algorithms.


中图分类号: 

  • TH17