重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 144-152.

• “精密工程测量技术与仪器”专栏 • 上一篇    下一篇

基于多传感器信号融合和残差神经网络的齿轮箱故障诊断

谢炅宏,陈永鹏,李嘉琳   

  1. (重庆交通大学 机电与车辆工程学院,重庆 400074)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介::谢炅宏,男,硕士,主要从事机电设备故障诊断与健康评估研究,Email:1129425177@qq.com;通信作者 陈永鹏, 男,博士,副教授,主要从事机电设备故障诊断与健康评估,齿轮绿色制造工艺及装备研究,Email:ypchen@cqj tu.edu.cn。

Fault diagnosis of gearboxes based on multi-sensor signal fusion and residual neural network

  • Online:2023-08-15 Published:2023-08-15

摘要: :针对齿轮箱齿轮在发生故障时故障信号易被强噪声淹没、信号采集不全面且训练 网络冗杂的问题,将融合了多传感器信号和加入注意力机制的残差神经网络引入到齿轮箱齿轮 故障诊断中。对多个传感器采集到的信号基于振动信号的方差贡献率进行数据融合,获取齿轮 箱更为全面的故障信息;通过小波变换获取信号的时频图,构建故障信号的二维时频信息;利用 加入了局部跨信道交互策略(ECA模块)的残差神经网络(ResNet)对不同的故障状态进行学习 并分类,在不降低维数的通道级全局平均池化后,分类效果得到明显提升。通过对不同故障类 型、不同信噪比、不同工况下的齿轮箱故障信号进行识别分析,并与不同的诊断方法对比,证明 了所提方法的可行性且具有很快的识别速率。

关键词: 信号融合, 故障诊断, 通道注意力机制, 残差神经网络

Abstract: In order to solve the problems that the fault signal is easy to be flooded by strong noise, the collected signal is not comprehensive and the training network is complicated, this paper introduces the residual neural network with multi-sensor signal fusion and attention mechanism into gearbox fault diagnosis. Firstly, the signals collected by multiple sensors are fused based on the variance contribution rate of the vibration signals to obtain more comprehensive fault information of a gearbox. Then, a time-frequency diagram of the signal is obtained by wavelet transform, and the two-dimensional time-frequency information of the fault signal is constructed. Finally, the residual neural network (ResNet) with local cross-channel interaction strategy (ECA module) is used to learn and classify different fault states. After the global channel-level average pooling without reducing dimension, the classification effect is obviously improved. Through the identification and analysis of the gearbox fault signals under different fault types, different signal-to-noise ratios and different working conditions, and compared with different diagnosis methods, it is proved that the proposed method is feasible and a fast recognition rate.

中图分类号: 

  • TH133.33