重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 289-296.

• 电气·电子 • 上一篇    下一篇

永磁同步电机在线参数辨识研究

郗建国,冯毅潇,赵宾鹏   

  1. (河南科技大学 车辆与交通工程学院,河南 洛阳 471003)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介:郗建国,男,硕士,讲师,主要从事新能源汽车技术、智能网联汽车技术研究,Email:17631276562@163.com;通 信作者 高建平,男,博士,教授,主要从事新能源汽车、智能网联汽车研究,Email:18042156547m@sina.cn。

Research on online parameter identification of permanent magnet synchronous motors

  • Online:2023-08-15 Published:2023-08-15

摘要: 针对基本粒子群算法在永磁同步电机参数辨识过程中存在辨识时间长、收敛速度 慢等问题,提出混沌映射与信息传递相结合的混沌遗传粒子群算法(CHPSO)对永磁同步电机 进行参数在线辨识。通过混沌映射产生混沌粒子,并与前一次参数辨识结果相结合,生成初始 化种群,再引入动态惯性权重系数,提高粒子多样性。采用分步辨识和循环更新的方法,解决参 数辨识的欠秩问题。仿真结果表明:该算法对电机参数进行辨识的结果偏差分别为定子电阻 1.32%,磁链 1.08%,d轴电感 0.92%,q轴电感 1.16%。台架实验证明了辨识方案的有效性。

关键词: 永磁同步电机, 参数在线辨识, 粒子群算法, 混沌映射

Abstract: Aiming at the problems of long recognition time and slow convergence speed in the parameter identification process of permanent magnet synchronous motors of the basic particle swarm algorithm, this paper proposes a chaotic genetic particle swarm algorithm (CHPSO) combining chaotic mapping and information transmission to identify the parameters of permanent magnet synchronous motors online. The algorithm generates chaotic particles through chaos mapping, combines with the previous parameter identification results to generate an initialized population, and then introduces dynamic inertia weight coefficients to improve particle diversity. At the same time, step-by-step identification and cyclic updating methods are adopted to solve the problem of under-ranking parameter identification. The simulation shows that the deviations of the algorithm in identifying the motor parameters are 1.32% stator resistance, 1.08% flux linkage, 0.92% d-axis inductance and 1.16% q-axis inductance respectively. Finally, the effectiveness of the identification scheme is proved by bench experiments.

中图分类号: 

  • TM351