重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 297-305.

• 电气·电子 • 上一篇    下一篇

基于 KPCASSAENN的变压器油界面张力预测

姚 远,贾路芬,刘 立   

  1. (1.国网重庆市电力公司长寿供电分公司,重庆 401220; 2.西南大学 工程技术学院,重庆 400715)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介:姚远,男,硕士,工程师,主要从事高电压绝缘研究,Email:914322063@qq.com;通信作者 周渠,男,博士,教授, 主要从事电力设备绝缘在线智能监测与故障诊断研究,Email:zhouqu@swu.edu.cn。

Prediction of interfacial tension of transformer oil based on KPCA-SSA-ENN

  • Online:2023-08-15 Published:2023-08-15

摘要: 针对目前变压器油界面张力的传统检测方法检测时间长、成本高等问题,提出了基 于多频超声检测技术和人工智能算法的界面张力预测方法。对选取的 175组变压器油样进行 圆环法界面张力检测和多频超声波检测,分析了多频超声波信号的幅频响应、相频响应和界面 张力之间的相关性。通过核主成分分析(KPCA)预处理多频超声波数据,划分样本集为 140组 的训练集和 35组的测试集,并建立麻雀搜索算法(SSA)优化 Elman神经网络(ENN)的界面张 力预测模型,预测平均相对误差为 6.53%,预测准确率达到 93.47%。

关键词: 变压器油, 界面张力, 多频超声, KPCASSAENN

Abstract:

Aiming at the problems of long time of detection and high cost in traditional detection methods of interfacial tension of transformer oil, this paper proposes a novel prediction method of interfacial tension based on multi-frequency ultrasonic detection technology and an artificial intelligence algorithm. 175 groups of transformer oil samples are measured through the ring interfacial tension method and multi-frequency ultrasonic detection, and the correlation between amplitude-frequency response, phase-frequency response and interfacial tension of multi-frequency ultrasonic signals is analyzed. The multi-frequency ultrasonic data are preprocessed by kernel principal component analysis (KPCA), and the sample set is divided into a training set with 140 groups and a test set with 35 groups. The sparrow search algorithm (SSA) is established to optimize the interfacial tension prediction model of Elman neural network (ENN). The average percentage error of the prediction is 6.53%, and the prediction accuracy reaches 93.47%.


中图分类号: 

  • TM4