重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (8): 177-184.

• 智能技术 • 上一篇    下一篇

考虑驾驶人与环境交互的驾驶风格识别模型研究

葛慧敏,黄嘉慧,臧文凯   

  1. 江苏大学 汽车与交通工程学院,江苏 镇江 212013
  • 出版日期:2023-09-15 发布日期:2023-09-15
  • 作者简介:葛慧敏,女,博士,副教授,主要从事交通安全、驾驶行为研究,Email:hmge@ujs.edu.cn。

Driving style recognition model considering interaction between driver and environment

  • Online:2023-09-15 Published:2023-09-15

摘要: 针对危险驾驶人群进行了实时驾驶风格辨识方法研究,提出了考虑驾驶人与周围 环境交互的驾驶风格识别模型。以模拟驾驶采集数据为基础,以 3s为时间窗口,将实时横向偏 移量、跟车距离、驾驶人注视点位置转化为驾驶风格表征因子,运用 FCMM(FuzzyCmeanM)对 驾驶人驾驶风格进行聚类,将实时驾驶风格标定为冲动型、较冲动型、普通型、保守型,并构建神 经网络模型对实时驾驶风格进行识别。结果表明:驾驶人驾驶风格波动与驾驶人注视点转变有 密切联系,神经网络模型对驾驶风格识别准确率最高可达到 99.1%,表现出良好的预测效果。

关键词: 交通工程, 交互, 驾驶风格, 模糊聚类, 识别模型

Abstract:  A real-time driving style identification method for dangerous drivers is studied. A driving style identification model considering the interaction between drivers and the surrounding environment is proposed.Based on the data collected by simulated driving, 3 s as the time window.Real-time lateral offset, following distance and driver’s gaze point position are transformed into driving style characterization factors. FCM-M(Fuzzy C-mean-M) is used to cluster drivers’ driving styles.The real-time driving style is classified as grumpy, impulsive, ordinary and conservative.Construct neural network model to identify real-time driving style.The results show that the fluctuation of driver’s driving style is closely related to the change of driver’s gaze point.The neural network model has the highest recognition accuracy of 99.1% for driving style, which shows a good prediction effect.

中图分类号: 

  • U491.2