重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (8): 231-237.

• 智能技术 • 上一篇    下一篇

一种基于注意力机制的动态分配知识图谱补全方法

唐广谦,李 波   

  1. 重庆理工大学 计算机科学与工程学院,重庆 40005
  • 出版日期:2023-09-15 发布日期:2023-09-15
  • 作者简介:唐广谦,男,硕士研究生,主要从事知识图谱研究,Email:2284683239@qq.com;通信作者 李波,男,教授,主要从 事计算机网络研究,Email:libo@cqut.edu.cn。

A dynamic allocation based on attention of knowledge graph completion method

  • Online:2023-09-15 Published:2023-09-15

摘要: 大多数知识图谱补全模型是将信息转变为便于处理的静态三元组,忽略了实体和 关系在不同语义条件下的动态属性和信息,导致模型分析和发现上下文信息的能力存在不足。 为此,提出了动态分配注意力得分的知识图谱补全模型(DASKGC),该模型能够为每个实体和 关系自适应调整匹配度得分。用邻居信息交互编码器来获取实体在不同语义下的角色信息,用 路径匹配处理的方法来获取实体间的准确关系,通过损失函数来更新三元组在不同语义下的相 关性分数。实验结果表明:所提出的 DASKGC在数据集 Nell995上的 MMR值为 895%,在数 据集 DDB14和 FB15K237上 Hits@1分别为 93.9%和 92.4%,其他的 Hits指标也有良好的 表现。

关键词: 知识图谱, 邻居编码, 补全研究, 知识表示学习

Abstract: Most knowledge graph completion models transform information into static triples that are easy to process, ignoring the dynamic attributes and information of entities and relations under different semantic conditions, which leads to the deficiency of the ability of the model to analyze and discover contextual information. To solve these problems, this paper proposes a knowledge graph completion model for dynamically assigning attention scores (DASKGC), which adaptively adjusts the matching score for each entity and relationship. The model uses a neighbor information exchange encoder to obtain the role information of entities under different semantics. Then the path-matching method is used to obtain the exact relationship between entities. Finally, the loss function is used to update the correlation scores of triples under different semantics. In the experimental results, the MMR of the proposed DASKGC on the dataset Nell-995 reached 89.5%, and the Hits@1 on the dataset DDB14 and FB15K-237 reached 93.9% and 92.4%, respectively. Other Hits indexes also had a good performance.

中图分类号: 

  • TP391.1