重庆理工大学学报(自然科学) ›› 2024, Vol. 38 ›› Issue (1): 59-66.
钱枫,胡桂铭,祝能,邓明星,王洁,许小伟
摘要: 针对图像去雨过度、泛化性差的问题,提出运用改进扩散模型进行单幅图像去雨的方法。通过前向过程添加高斯噪声使数据变为高斯分布,设计残差模块双输入信息通道、添加ECA(efficientchannelattention)通道注意力机制模块以构建噪声估计网络,实现全局平均池化而不降低维数,从而捕获局部跨通道交互信息;利用模型网络进行反向采样,预测并剔除雨痕噪声,实现图像去雨。最后通过模拟雨滴数据集和Rain100数据集对改进的扩散模型与其他4种算法进行对比实验测试,实验结果表明改进的扩散模型能够有效去除雨痕,其中雨滴和雨线的峰值信噪比分别为30.3285和34.8965,结构相似性分别为0.9271和0.9620;自制真实雨图数据集,使用YOLOv7算法对去雨后的图像进行车辆检测,结果表明采用改进的扩散模型去雨能够有效提高车辆检测置信度,进一步验证了所提方法具有良好的去雨效果和泛化能力
中图分类号: