摘要: 现有的在猪等级评定中应用的BP神经网络算法存在对初始权值敏感、易陷入局部最小值等缺陷,从而导致预测精度不高、收敛速度慢的状况。针对该问题,在神经网络训练中引入基于全局随机优化思想的粒子群优化(PSO)算法。先利用PSO优化BP神经网络的初始权值,然后采用神经网络完成给定精度的学习,建立了粒子群-BP神经网络模型。与传统BP神经网络相比,该方法预测精度高、收敛速度快,可以有效地运用到猪等级评定中。
. 基于粒子群的BP神经网络算法在猪等级评定中的应用[J]. 重庆理工大学学报(自然科学), 2013, 27(1): -.