摘要: 如何有效挖掘学生行为数据是提升学生信息化管理水平的重要内容。针对目前学生信息化管理平台不完善、挖掘精度低的问题,结合决策树、神经网络以及朴素贝叶斯算法建立组合模型,建立基于Spark的学生行为分析与预测平台;同时,以学生消费规律、生活习惯以及学习情况等校园行为作为大数据来源,进行预测分析和实例验证。结果表明:该模型预测结果与实际情况相吻合,平均预测误差不超过5%,验证了所用方法的有效性,可根据学生行为特性分析其行为规律,指导学生行为向全面健康方向发展。
中图分类号:
. 基于校园大数据的学生行为特征分析与预测方法[J]. 重庆理工大学学报(自然科学), 2019, 33(7): 201-206.