摘要: 公交车是城市交通系统的主要组成部分,准确预测公交车辆到站时间作为城市智能交通系统(ITS)的重要应用,可以有效提升公交车乘客的乘坐体验,增加公交出行的吸引力。为此,提出一种基于集成学习方法的公交车到站时间预测模型,利用联合多种弱模型的方法,确定优化目标,将公交车到站时间相关的影响因素进行特征化后,基于海量历史数据训练机器学习模型,进而预测公交到站时间。实例分析和验证结果表明,GBDT方法的预测性能明显优于其他方法,可显著提高公交到站时间预测的准确性。
中图分类号:
荆灵玲1, 解 超2, 3, 王安琪4. 基于集成学习的公交车辆到站时间预测模型研究[J]. 重庆理工大学学报(自然科学), 2019, 33(10): 47-53.