重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 1-8.

• “复杂环境智能汽车感知与控制”专栏 •    下一篇

FSAC赛车动态视野算法研究

宫彦乔,刘立东,李 刚   

  1. 1.辽宁工业大学 汽车与交通工程学院,辽宁 锦州 121001; 2.林肯大学,英国林肯市 LN11AB;3.布鲁塞尔大学,英国伦敦市 UB83P
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:宫彦乔,男,硕士研究生,主要从事智能汽车先进传感方面研究,Email:gong_yanqiao@qq.com;通讯作者 李刚, 男,博士,教授,硕士生导师,主要从事智能网联汽车关键技术研究,Email:qcxyligang@lnut.edu.cn。

Research on dynamic vision algorithm of FSAC racing cars

  • Online:2023-02-16 Published:2023-02-16

摘要: 针对中国大学生无人驾驶方程式(FSAC)赛车在高速转弯工况中,由于弯道视野中 获得的桩桶数量少而易于导致路径规划失败的问题,设计了一种基于激光雷达和惯性导航的动 态视野算法。该算法基于激光雷达信息对桩桶进行检测,同时利用惯性导航解算得到航向角的 变化量,并进行加权滑动平均滤波,预测下一时刻航向角变化趋势,结合车速与车轮转角信息, 计算并调整感兴趣区域的范围,将感知视野保持在赛道中央,在转弯处获取更多桩桶信息。将 算法进行实车验证,结果表明:有效提高了赛车的感知效率,提升了赛车的路径规划能力。

关键词: FSAC赛车, 激光雷达, 惯性导航, 动态视野, 加权滑动平均滤波

Abstract: Aiming at the problem that the number of cone obstacles obtained in the view of a curved racing track is small for driverless FSAC racing cars for college students in China under a high-speed turning condition, which is easy to lead to failure of path planning, this paper designs a dynamic vision algorithm based on lidar and inertial navigation. The algorithm detects the cone obstacles based on the information of lidar. At the same time, the algorithm obtains the change of the heading angle by using inertial navigation solution, and performs weighted moving average filtering on the change of the heading angle to predict its change trend at the next moment. Combined with the speed and wheel angle information, the algorithm calculates and adjusts the range of the region of interest so as to keep the perceptual vision in the center of the racing track and obtain more information of cone obstacles at the turning. The algorithm is verified by real vehicle experiments. The results show that it effectively improves the perception efficiency and the path planning ability of the car.

中图分类号: 

  • U469.696