重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 92-100.

• 机械·材料 • 上一篇    下一篇

多模块 UNetBiLSTM网络驱动的滚动轴承寿命预测方法研究

李扬号,丁 康,蒋 飞   

  1. (1.华南理工大学 机械与汽车工程学院,广州 510640; 2.人工智能与数字经济广东省实验室,广州 510640; 3.广州华工机动车检测技术有限公司,广州 51064
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:李扬号,男,硕士研究生,主要从事 NVH与信号处理研究,Email:201920100150@mail.scut.edu.cn;通讯作者 何 国林,男,博士,副教授,主要从事齿轮故障诊断、信号处理及数字孪生技术研究,Email:hegl@scut.edu.cn;共同 通讯作者 黎杰,男,教授级高级工程师,主要从事汽车检测与控制研究,Email:106lj@163.com

Research on the life prediction method of rolling bearings driven by the multi-module U-Net-BiLSTM network

  • Online:2023-02-16 Published:2023-02-16

摘要: 针对滚动轴承寿命预测方法难以准确识别故障始发时刻(FPT)和提取时间序列深 层特征的问题,提出了一种联合高精度 FPT点和多模块 UNetBiLSTM网络的滚动轴承寿命预 测方法:对小波降噪后原始信号功率谱中每一时刻内所有频率成分进行累加求和,联合欧氏距 离准则与 3σ原则识别高精度 FPT点;分别将残差块、池化层和归一化层引入编码器和解码器 中实现多尺度特征融合,从而改进传统 UNet网络,有效提升了模型对时序信号的处理能力和 预测速度。实验结果表明:相较于现有 3种深度学习方法,具有更高的预测精度和更快的预测 速度。

关键词: 滚动轴承, 寿命预测, 故障始发时刻, UNet网络

Abstract: Aiming at the problem that it is difficult for the rolling bearing life prediction method to accurately identify the first predicting time (FPT) and extract the deep features of the time series, this paper proposes a rolling bearing life prediction method combining high-precision FPT points and the multi-module U-Net-BiLSTM network. After wavelet noise reduction, all frequency components in the power spectrum of the original signals at each moment are accumulated and summed, and the Euclidean distance criterion and the 3σ principle are combined to identify high-precision FPT points; the residual blocks, pooling layers and normalization layers are respectively introduced into the encoder and the decoder to achieve multi-scale feature fusion, thereby upgrading the traditional U-Net network and effectively improving the process ability and prediction speed for time series signals of the model. The experimental results show that this method has higher prediction accuracy and faster prediction speed than the existing three deep learning comparison method

中图分类号: 

  • TH165+.3