重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (1): 166-176.

• 信息·计算机 • 上一篇    下一篇

融合注意力机制和迁移学习的跨数据集微表情识别

王 越,王 峰,肖家赋   

  1. 1.天津大学 电气自动化与信息工程学院,天津 300072; 2.太原理工大学 信息与计算机学院,山西 晋中 030600; 3.武警指挥学院,天津 30035
  • 出版日期:2023-02-16 发布日期:2023-02-16
  • 作者简介:王越,女,硕士研究生,主要从事图像处理研究,Email:2021234212@tju.edu.cn;通讯作者 王峰,男,博士,教授, 主要从事信号与信息处理、人工智能及模式识别领域研究,Email:wangfeng@tyut.edu.cn。

Cross-database micro-expression recognition combining attention mechanism and transfer learning

  • Online:2023-02-16 Published:2023-02-16

摘要: 针对传统光流法泛化能力差,训练过程极易出现过拟合,造成微表情识别率不高等 问题,在特征提取阶段,根据残差结构思想,在每层金字塔级采用独立且序列化的方式训练卷积 网络,结合注意力机制对微表情图像的光流矢量表达进行逐级细化,构建一种基于关键帧的金 字塔光流模型,与三正交平面的局部二值模式 (LBPTOP)特征级联融合得到最终特征表示,有 效提取了视频序列的时空纹理特征及光学应变信息;在分类模型方面,针对深度学习识别模型 应用于微表情分类时,由于卷积神经网络 (CNN)无法实现面部关键区域与对应情感标签向量 紧密关联导致分类性能较差的问题,提出一种以 CNN为主体,结合图卷积网络(GCN)的微表 情跨数据集迁移学习网络框架,对图像融合特征和标签向量隐藏联系进行分析,利用宏表情定 量优势辅助微表情识别,在 CASMEⅡ和 SAMM两种微表情数据集上实现 4种情绪数据的分 类,识别率从 57.56%升至 75.93%。

关键词: 微表情识别, 注意力机制, 迁移学习, 光流, 残差模块

Abstract: Factors like a poor generalization ability and overfitting in the training process of the traditional optical flow method cause a low recognition rate of micro-expression. In the feature extraction stage, the convolution network is trained independently and serially at each pyramid level according to the idea of residual structure, and an optical flow vector expression of micro-expression images is refined step by step by combining attention mechanism so as to construct a pyramid optical flow model based on key frames. The final feature representation is obtained by cascading fusion with local binary patterns from three orthogonal planes (LBP-TOP) features, which effectively extracts the spatio-temporal texture features and optical strain information of video sequences. In the aspect of classification model, when the deep learning recognition model is applied to micro-expression classification, convolutional neural network (CNN) cannot achieve a close association between the key facial regions and the corresponding emotional tag vectors, which leads to poor classification performance. Therefore, this paper proposes a transfer learning network framework for micro-expression cross datasets based on CNN and graph convolutional network (GCN) to analyze the concealed relationship between image fusion features and tag vectors, which uses the quantitative advantages of macro-expression to assist micro-expression recognition. Experiments are carried out on two micro-expression databases, CASME II and SAMM, to realize the classification of four kinds of emotion data, and the recognition rate rises from 57.56% to 75.93%.

中图分类号: 

  • TP183