重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (2): 307-315.doi: 10.3969/j.issn.1674-8425(z).2023.02.034

• “第 23届流体动力与机电控制工程国际学术会议”专栏 • 上一篇    下一篇

采用单分类方法的行星滚柱丝杠故障检测

牛茂东,马尚君,蔡 威   

  1. 1.西北工业大学 机电学院,西安 710072; 2.江山重工研究院有限公司,湖北 襄阳 44105
  • 出版日期:2023-03-21 发布日期:2023-03-21
  • 作者简介:牛茂东,男,博士研究生,主要从事行星滚柱丝杠动力学及故障诊断方法研究,Email:ndd0211@163.com;通讯 作者 马尚君,男,博士,副研究员,主要从事机电伺服系统技术和精密机械传动技术研究,Email:mashangjun@ nwpu.edu.cn。

Fault diagnosis of planetary roller screw mechanism through one-class method

  • Online:2023-03-21 Published:2023-03-21

摘要: 针对行星滚柱丝杠(planetaryrollerscrewmechanism,PRSM)在实际应用中故障机 理不明和故障种类少,难以有效进行故障决策这一现存问题,提出采用单分类模型———深度支 持向量数据描述(deepsupportvectordatadescription,deepSVDD)进行故障检测,判断 PRSM是 否处于正常状态。首先,在 PRSM试验台上采集正常状态、润滑失效和滚柱一侧断齿 3种状态 的振动信号;其次,对数据进行归一化并通过窗口裁剪的方式进行数据增强,以扩充样本数量; 然后,通过小波包变换对信号进行分解,以初步提取数据的特征;最后,利用 deepSVDD实现 PRSM故障检测,同时与单分类支持向量机(oneclasssupportvectormachine,OCSVM)和支持向 量数据描述(supportvectordatadescription,SVDD)方法进行对比,结果表明,deepSVDD具有更 好的分类能力和较高的训练效率,较为适合实现 PRSM故障检测。

关键词: 行星滚柱丝杠, 深度支持向量数据描述, 单分类, 故障检测

Abstract: Aiming at the problem that it is difficult to achieve fault decision-making due to an unknown failure mechanism of planetary roller screw mechanism (PRSM)and a shortage of faulty types of PRSM in practice,this paper proposes a one-class model called deep support vector data description (deep SVDD) to determine whether PRSM is normal or not. Firstly,vibration signals of PRSM are collected on a PRSM test bench under three working states, including normal state, failure of lubrication and failure of teeth on one side of the roller. Then, the data are normalized and enhanced by window cropping to expand the number of samples. After that,wavelet packet transform is used to initially extract features of the data by decomposing signals. Finally, deep SVDD is used to complete fault diagnosis of PRSM.Meanwhile, it is compared with one-class support vector machine (OCSVM) and support vector data description (SVDD). The results show that deep SVDD has a better classification ability and higher training efficiency, so it is suitable for fault diagnosis of PRSM.

中图分类号: 

  • TH17