重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 27-38.

• 车辆工程 • 上一篇    下一篇

基于蚁狮算法优化的 LQR横向跟踪控制策略

王柏林,李云伍,赵 颖   

  1. 1.西南大学 工程技术学院,重庆 400715; 2.丘陵山区农业装备重庆市重点实验室,重庆 400716; 3.重庆长安汽车软件科技有限公司,重庆 40002
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:王柏林,男,硕士研究生,主要从事智能汽车路径跟踪控制研究,Email:wbl17792615320@163.com;通信作者 李云伍,男,博士,教授,主要从事智能汽车环境感知、路径规划及跟踪控制研究,Email:liywu@swu.edu.cn。

LQR lateral tracking control strategy based on ALO algorithm

  • Online:2023-05-06 Published:2023-05-06

摘要: 为解决线性二次型调节器(LQR)在经典固定权重系数下对大曲率参考路径适应性 不佳致使车辆跟踪精度与稳定性欠佳的问题,设计了一种基于蚁狮算法(ALO)优化的带有预瞄 前馈转角补偿的自适应权重系数 LQR控制器以进行路径横向跟踪。基于 2自由度车辆动力学 横向跟踪误差模型设计了经典 LQR控制器。采用预瞄前馈控制消除误差模型简化带来的稳态 误差。提出以横向距离偏差、航向角偏差和输出前轮转角为评价函数,基于蚁狮算法优化的自 适应 LQR权重系数修正策略。通过实车测验,验证了控制器在实车环境下的控制效果。结果 表明:所设计的控制器能够适应大曲率参考路径,并兼顾路径跟踪精准性和行驶稳定性,同时针 对不同车速鲁棒性表现优异。

关键词: 智能汽车, 横向跟踪, LQR控制, 蚁狮算法

Abstract: In order to solve the problem of poor vehicle tracking accuracy and poor stability caused by poor adaptability of a linear quadratic regulator (LQR) to the large curvature reference path under the traditional fixed weight coefficient, this paper designs an adaptive weight coefficient LQR controller with preview feedforward angle compensation to track the path laterally based on ant lion optimization (ALO) algorithm. Firstly, a classical LQR controller is designed based on the lateral tracking error model of two-degree-of-freedom vehicle dynamics. Secondly, the preview feedforward control is used to eliminate the steady state error caused by error model simplification. Then, an adaptive LQR weight coefficient correction strategy based on ALO is proposed, which takes lateral distance deviation, heading angle deviation and output front wheel angle as the evaluation functions. Finally, through the real vehicle test, the control effect of the controller in the real vehicle environment is verified. The results show that the designed controller can adapt to the large curvature reference path, take into account of the path tracking accuracy and driving stability, and perform well in robustness at different vehicle speeds.

中图分类号: 

  • U461