重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 192-199.

• 智能技术 • 上一篇    下一篇

TD-LSTM-S模型在二氧化碳浓度预测中的应用

付子骏,吴永明,徐 计   

  1. 1.贵州大学 公共大数据国家重点实验室,贵阳 550025) (2.贵州大学 计算机科学与技术学院,贵阳 55002
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:付子骏,男,硕士研究生,主要从事数据挖掘研究,Email:fuzijun1996@163.com;通信作者 吴永明,男,博士,教 授,主要从事大数据制造、数据挖掘研究,Email:wu20811055@163.com。

Application of TD-LSTM-S model to carbon dioxide concentration prediction

  • Online:2023-05-06 Published:2023-05-06

摘要: 针对传统预测模型无法利用多元数据变量间内在联系的问题,提出了基于张量分 解和序列最小二乘规划(SLSQP)优化的长短期记忆神经网络(LSTM)模型 TDLSTMS。在模型 中将数据构建成张量并对其进行分解与优化,使数据能够保留变量间的内在联系,采用 SLSQP 算法进行优化,使 LSTM能够有效利用变量间的内在联系,提高模型的预测性能。实验结果表 明:提出的 TDLSTMS模型较传统模型具有更高的预测性能。

关键词: 二氧化碳浓度预测, 多元数据变量间内在联系, 张量分解, 序列最小二乘规划, 长短 期记忆神经网络

Abstract: To address the problem that traditional prediction models cannot exploit the intrinsic connections among variables of multivariate data, this paper proposes a long and short-term memory (LSTM) neural network model, TD-LSTM-S, which is based on tensor decomposition and sequential least square quadratic programming (SLSQP) optimization. In the model, the data are constructed into tensors and are decomposed and optimized so that the data can retain the intrinsic connections among variables. The SLSQP algorithm is used to optimize the LSTM so that it can effectively use the intrinsic connections among variables to improve the prediction performance of the model. The experimental results show that the proposed TD-LSTM-S model has higher prediction performance than the traditional model.

中图分类号: 

  • TP39