重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 209-216.

• 智能技术 • 上一篇    下一篇

面向家庭用电负荷分解的时间卷积注意力网络

刘 政,刘 鑫,刘 伟   

  1. (1.重庆理工大学 计算机科学与工程学院,重庆 400054; 2.重庆理工大学 电气与电子工程学院,重庆 400054
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:刘政,男,副教授,主要从事嵌入式、电力系统自动化研究,Email:liuzheng@cqut.edu.cn;通信作者 刘鑫,男,硕 士研究生,主要从事非侵入式负荷监测研究,Email:1304724327@qq.com

Temporal convolutional attention-based network for household electric load disaggregation

  • Online:2023-05-06 Published:2023-05-06

摘要: 针对传统深度神经网络分解模型准确度不能满足非侵入式负荷监测实际需求的现 状,提出了一种基于时间卷积网络和注意力机制的负荷分解网络(TCNA)。采用序列到点的分 解方法,使用改进的时间卷积网络为基础提取负荷数据特征,增加卷积核感受野,获取更多数据 特征信息。模型结合注意力模块,提取到更加丰富和有价值的特征信息,提升了训练效率。在 UKdale数据集上的实验结果表明:该模型比现有的分解方法在分解性能和电器启停状态判断 方面有明显提升。

关键词: 负荷分解, 深度学习, 注意力机制, 时间卷积网络

Abstract: Aiming at the fact that the accuracy of the traditional deep neural network disaggregation model still cannot meet the actual needs of non-invasive load monitoring, this paper proposes a load disaggregation model based on Temporal Convolutional Attention-based Network (TCAN). The model adopts the sequence-to-point disaggregation method, uses the improved temporal convolutional network as the basis to extract load data characteristics, increases the convolutional kernel sensing field, and obtains more data feature information. The model combines the attention module to extract richer and more valuable feature information, which improves the training efficiency. The experimental results in the UK-dale dataset show that the model has significant improvement in decomposing performance and judging the start-stop state of electrical appliances than the existing disaggregation methods.

中图分类号: 

  • TM714