重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 217-225.

• 智能技术 • 上一篇    下一篇

融合多重注意力机制残差网络的血细胞识别

倪锦园,张建勋   

  1. 重庆理工大学 计算机科学与工程学院,重庆 40005
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:倪锦园,男,硕士研究生,主要从事数字图像处理与分析、医学图像研究,Email:1833474277@qq.com;通信作者 张建勋,男,博士,教授,主要从事数字图像处理与分析、实时计算机图形学研究,Email:466908695@qq.com

Blood cell recognition in the residual network based on a multiple attention mechanism

  • Online:2023-05-06 Published:2023-05-06

摘要: 针对自然状态下血细胞识别精度不高、速度较慢等情况,提出一种融合多重注意力 机制残差网络的血细胞分类方法。为提高网络运算速度,加强模型的非线性表达能力,提出了 注意力混洗单元模块;为提高模型对血细胞特征的表示能力,嵌入了多重注意力机制;为了进一 步减缓网络的过拟合现象,加强模型的泛化能力,优化了残差支路结构。实验结果表明,该模型 在血细胞数据集上的准确率为 95.67%,参数量为 13.22M,与其他网络相比,所提出的模型具 有更高的精确度,同时能保持较低的参数量。

关键词: 多重注意力机制, 残差网络, 混洗单元, 过拟合

Abstract: In response to low accuracy and slow speed of blood cell recognition in the natural state, this paper proposes a blood cell classification method of the residual network incorporating a multiple attention mechanism. In order to improve the computational speed of the network and enhance the nonlinear representation capability of the model, an attention blending unit module is proposed. In order to improve the representation capability of the model for blood cell features, a multiple attention mechanism is embedded. With an aim to further mitigate network overfitting and enhance the generalization capability of the model, the residual branch structure is optimized. The experimental results show that the model has an accuracy of 95.67% on the blood cell dataset with a parametric number of 13.22 M. In comparison with other networks, the model proposed in this paper has a higher accuracy while maintaining a lower parametric number.

中图分类号: 

  • TP311.1