重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 260-269.

• 数学·统计学 • 上一篇    下一篇

超曲面 Calabi几何的体积变分及稳定性

李 明,杨 红   

  1. 重庆理工大学 数学科学研究中心,重庆 400054)
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:李明,男,博士,副教授,主要从事微分几何学研究,Email:mingli@cqut.edu.cn;通信作者 杨红,女,硕士研究生, Email:1832756077@qq.com。

Volume variational formulae for the Calabi geometry of hypersurface and the stability

  • Online:2023-05-06 Published:2023-05-06

摘要: 首先给出了参数化超曲面在 Calabi法化下的几何结构。证明了一般参数化超曲面 的 Calabi几何均可局部描述为凸函数的图的典型 Calabi几何,并证明 Hessian流形可局部表示 为凸函数的图的典型 Calabi几何。对于参数化超曲面,建立了 Calabi几何的体积第一变分公式 和第二变分公式。作为推论,证明了 2维 Gauss曲率非正的极值 Calabi曲面是稳定的,并且仿 射面积泛函在这类曲面取得极大值。

关键词: 超曲面的 Calabi几何, Hessian流形, 体积变分公式, 稳定极值曲面

Abstract: This paper firstly investigates the geometric structure of parametrized hypersurface under the Calabi normalization. Then, it is proved that the Calabi geometry of the general parametrized hypersurface is locally equivalent to the canonical Calabi normalization of the graphs of the convex functions. It is also proved that Hessian manifolds can be locally expressed as the typical Calabi geometry of the graphs with the convex functions. For parametrized hypersurface, the first volume variational formula and the second variational formula of the Calabi geometry are established. As a consequence, it is proved that any extreme Calabi surface with non-positive 2-dimensional Gauss curvature is stable, and the affine area functional obtains local maximum on such surfaces.

中图分类号: 

  • O186.1