重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (4): 304-314.

• 能源动力环境 • 上一篇    下一篇

基于天鹰优化算法的短期风电功率区间预测

陈 申,叶小岭,熊 雄   

  1. 1.南京信息工程大学 自动化学院,南京 210044; 2.南京信息工程大学 气象灾害预报预警与评估协同创新中心,南京 21004
  • 出版日期:2023-05-06 发布日期:2023-05-06
  • 作者简介:陈申,男,硕士,主要从事风电功率预测研究,Email:15252019492@163.com;通信作者 叶小岭,女,硕士生导师, 主要从事新能源发电相关技术研究,Email:000510@nuist.edu.cn。

Short-term wind power interval prediction based on Aquila optimization algorithm

  • Online:2023-05-06 Published:2023-05-06

摘要: 为克服随机森林算法预置参数依赖经验设定和风电确定性预测难以描述其随机性 的困难,提出一种基于天鹰优化算法(Aquilaoptimizer,AO)、随机森林(RF)和非参数核密度估 计(NKDE)相结合的区间预测方法。首先将 AO与 RF相结合进行功率单点值预测,在此基础 上,为了能够给电网调度和优化配置提供更多信息,引入 NKDE进行风电功率区间预测。根据 所提出的方法,对如东某风场使用 WRF模式预报的风速数据进行对比实验。实验证明,AO RFNKDE区间预测模型能够给出综合性能更优的风电功率波动区间,对减少风电功率不确定 性,弱化电网波动具有应用价值。

关键词: WRF模式, 随机森林, 天鹰优化算法, 非参数核密度估计, 风电功率区间预测

Abstract: To solve the problems that the pre-set parameters of the random forest algorithm depend on empirical settings and the randomness of wind power deterministic prediction is difficult to describe, this paper proposes an interval prediction method based on a combination of the Aquila optimizer (AO), Random Forest (RF) and nonparametric kernel density estimation (NKDE). Firstly, the AO is combined with RF for power single-point value prediction, on which basis NKDE is introduced for wind power interval prediction to provide more information for grid scheduling and optimal allocation. According to the proposed method, a comparison experiment is then conducted on the wind speed data derived from a wind farm in Rudong County, Jiangsu Province using WRF model forecasts. The experiments show that the AO-RF-NKDE interval prediction model can provide wind power fluctuation intervals with a better comprehensive performance, which has a higher application value for reducing wind power uncertainty and weakening grid fluctuation.

中图分类号: 

  • TM614