重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (5): 169-177.

• 信息·计算机 • 上一篇    下一篇

基于变分模态分解和 LSTM的短时交通流预测

邴其春,张伟健,沈富鑫,胡嫣然,高 鹏,刘东杰   

  1. (1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520; 2.青岛市交通运输公共服务中心,山东 青岛 266100
  • 出版日期:2023-06-21 发布日期:2023-06-21
  • 作者简介:邴其春,男,博士,副教授,主要从事智能交通系统关键理论与技术研究,Email:bingqichun@163.com。

Short-term traffic flow prediction based on variational modal decomposition and LSTM

  • Online:2023-06-21 Published:2023-06-21

摘要: 交通流具有非线性、波动性和随机性等特征,为进一步提高短时交通流预测精度, 提出了一种基于变分模态分解(VMD)和长短时记忆(LSTM)神经网络的短时交通流预测方法。 采用 VMD将原始交通流数据分解为 k个平稳的固有模态分量(IMF),针对每个模态分量分别 输入 LSTM模型进行预测,将各项预测值汇总叠加,获得交通流预测结果。利用上海南北高架 快速路感应线圈数据进行验证分析,结果表明:采用 VMD分解后的预测结果更为精确,相比于 BPNN、LSTM、EMDLSTM、EEMDLSTM等模型的预测结果,在平均绝对误差(MAE)方面分别优 化了 35.5%、28.25%、21.1%、13%,具有较高的预测精度。

关键词: 智能交通, 短时交通流预测, 变分模态分解, 长短时记忆神经网络, 深度学习

Abstract: Traffic flow has the characteristics of nonlinearity, volatility and randomness. In order to further improve the prediction accuracy of short-term traffic flow, this paper proposes a short-term traffic flow prediction method based on variational modal decomposition (VMD) and long and short-term memory (LSTM) neural network. Firstly, VMD is used to decompose the original traffic flow data into k stable Intrinsic Mode Functions (IMF). Then, LSTM models are input into each modal component for prediction, and all of the predicted values are summarized and superimposed to obtain the final traffic flow prediction results. Based on the induction coil data of Shanghai North-South Elevated Expressway, the results show that the prediction result after VMD decomposition is more accurate. Compared with the prediction results of BPNN, LSTM, EMD-LSTM and EEMD-LSTM, the mean absolute error (MAE) is optimized by 35.5%, 28.25%, 21.1% and 13% respectively, showing a high prediction accuracy.

中图分类号: 

  • U491