重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (5): 178-184.

• 信息·计算机 • 上一篇    下一篇

融合胶囊网络的中文短文本情感分析

王 东,李佩声   

  1. (重庆理工大学 计算机科学与工程学院,重庆 400054)
  • 出版日期:2023-06-21 发布日期:2023-06-21
  • 作者简介:王东,男,博士,副教授,主要从事智能仪器设计研究,Email:wangdong@cqut.edu.cn;通信作者 李佩声,男,硕士 研究生,主要从事自然语言处理研究,Email:924333916@qq.com。

Sentiment analysis of short Chinese texts integrating capsule networks

  • Online:2023-06-21 Published:2023-06-21

摘要: 针对传统文本分类模型提取中文短文本内在语义信息不够全面的缺点,提出了一 种融合预训练模型和胶囊网络的文本分类模型。使用多尺度卷积神经网络提取预训练模型各 层蕴含不同层次的局部语义,采用注意力机制融合得到多粒度局部语义和胶囊网络获取的全局 语义,结合正则化方法提高模型对文本情感极性的判别能力。对比实验中模型在 3个不同领域 的真实数据集上的 F1值,结果表明:模型利用改进的胶囊网络能够更加全面地提取中文短文本 语义特征,提升情感极性判别精度。

关键词: 胶囊网络, 情感分析, 预训练模型, 注意力机制

Abstract: In order to address the shortcomings of traditional text classification models in incomplete extracting the intrinsic semantic information of short Chinese texts, this paper proposes a text classification model that fuses pre-training models and capsule networks. A multi-scale convolutional neural network is firstly used to extract the local semantics in each layer of different levels of the pre-training model. After that, an attention mechanism is used to fuse the obtained multi-grained local semantics and the global semantics obtained through the capsule network, which is then combined with a regularization method to improve the discrimination ability of the model to the sentiment polarity of the text. Finally, the F1 values of the model in the experiment are compared with the real datasets in three different domains. The experimental results show that the model can extract the semantic features of the short Chinese texts more comprehensively by using the improved capsule network, which improves the accuracy of sentiment polarity discrimination.

中图分类号: 

  • TP391.9