重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 66-74.

• 车辆工程 • 上一篇    下一篇

运用粒子群算法优化 HEV再生制动模糊控制策略

范卫峰,高爱云,付主木,杨 杰   

  1. (1.河南科技大学 车辆与交通工程学院,河南 洛阳 471003; 2.河南科技大学 信息工程学院,河南 洛阳 471023)
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:范卫峰,男,硕士,主要研究混合动力汽车能量管理,Email:fan_w_f@163.com;通信作者 高爱云,女,博士,副教 授,主要研究混合动力汽车动力系统控制及能量管理,Email:gao_cloud@163.com。

The fuzzy control strategy of HEV regenerative braking through the particle swarm optimization algorithm

  • Online:2023-07-12 Published:2023-07-12

摘要: 为了提高 HEV制动能量回收率,同时保证汽车制动效果,提出粒子群算法优化 HEV再生制动模糊控制策略。设计考虑制动效果和制动能量回收的多段前后轮制动力分配曲 线,尽量将制动力分配给前轮。通过模糊控制器,实现前轮机械制动力和再生制动力合理分配。 为了进一步提高制动能量回收和保证汽车制动效果,以制动效果和制动能量回收为优化目标函 数,利用粒子群算法优化模糊规则。结果表明,在 LYDC行驶工况下,设计的多段前后轮制动力 分配曲线和粒子群算法优化后的模糊规则均有效提高了再生制动能量回收,同时满足了制动效 果的要求。

关键词: 混合动力汽车, 再生制动, 制动力分配, 模糊控制, 粒子群算法

Abstract: In order to improve the recovery rate of HEV braking energy and ensure the braking effect,this paper proposes the particle swarm optimization algorithm to optimize the fuzzy control strategy of HEV regenerative braking.Firstly,considering both braking effect and braking energy recovery,a multi-segment braking force distribution curve between the front and the rear wheels is designed to distribute more braking force to the front wheels as much as possible.Then,by using the fuzzy controller,mechanical braking force and regenerative braking force distributions of the front wheels are achieved.Finally,in order to further improve the braking energy recovery and ensure the braking effect of the vehicle,the braking effect and the braking energy recovery are taken as the optimization objective function,and the fuzzy rules are optimized by using the particle swarm optimization algorithm.The results show that,under LYDC driving conditions,the designed multi-segment front and rear wheel braking force distribution curves and the fuzzy rules optimized by the particle swarm optimization algorithm can effectively improve the regenerative braking energy recovery and meet the requirements of the braking effect.

中图分类号: 

  • U461