重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (6): 332-339.

• 能源动力环境 • 上一篇    下一篇

FSAC赛道地图构建算法研究

兰建平,郭文韬,汤文靖,佘依函   

  1. (湖北汽车工业学院 汽车工程师学院,湖北 十堰 442002)
  • 出版日期:2023-07-12 发布日期:2023-07-12
  • 作者简介:兰建平,男,硕士,讲师,主要从事汽车主动安全与智能驾驶研究,Email:20120006@huat.edu.cn;郭文韬,男,硕 士研究生,主要从事智能网联汽车多传感器研究,Email:2250663394@qq.com。

Research on the building algorithm of FSAC track map

  • Online:2023-07-12 Published:2023-07-12

摘要: 针对中国大学生无人驾驶方程式大赛(formulastudentautonomousChina,FSAC)的 直线加速、八字环绕和高速循迹的比赛项目,提出一种基于单目相机与组合惯导融合的锥桶地 图构建算法。采用 YOLOv3对锥桶种类进行检测,单目相机测距和组合惯导定位确定锥桶位 置,并使用改进的 K近邻(Knearestneighbors,KNN)算法对所得锥桶进行滤波处理。实验结果 表明:所提出算法对比于马尔科夫随机场算法(Markovrandomfield,MRF),其精度提升43%, 召回率提升 2.9%,锥桶位置的平均误差降低了 52.8%,可为无人驾驶的感知定位建图提供参 考;能较好地解决 FSAC方程式赛车地图构建问题,为 FSAC方程式赛车的决策规划提供判断 依据。

关键词: 单目相机, 组合惯导, YOLOv3, KNN, 锥桶地图

Abstract: Aiming at competition items of straight-line acceleration,figure-eight circle and high-speed tracking of Formula Student Autonomous China (FSAC),this paper proposes a cone barrel map construction algorithm based on the fusion of monocular camera and combined inertial guidance.YOLOv3 is used to detect the type of the cone barrel,monocular camera ranging and combined inertial guidance positioning are used to determine the position of the cone barrel,and an improved K-nearest neighbors (KNN) algorithm is used to filter the obtained cone barrel.The experimental results show that,compared with Markov Random Field (MRF),the accuracy of the proposed algorithm increases by 4.3%,the recall rate increases by 2.9%,and the average error of the cone barrel position reduces by 52.8%,which can be used as a reference for the mapping of driverless sensing and positioning.The proposed algorithm also solves the problem of FSAC formula racing map construction well,and provides judgment basis for decision planning of FSAC formula racing.

中图分类号: 

  • TP391.41