重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (7): 110-119.

• “精密工程测量技术与仪器”专栏 • 上一篇    下一篇

用于滚动轴承局部故障诊断的深度降采样方法

林慧斌,习慈羊,丁 康   

  1. 华南理工大学 机械与汽车工程学院,广州 510640)
  • 出版日期:2023-08-15 发布日期:2023-08-15
  • 作者简介:林慧斌,女,博士,副教授,主要从事机械故障诊断、信号处理与机器学习研究,Email:hblin@scut.edu.cn。

Deep down-sampling methods for local fault diagnosis of rolling bearings

  • Online:2023-08-15 Published:2023-08-15

摘要: 受香农采样定理限制,滚动轴承故障诊断往往需要设置较高的采样频率,这给数据 传输和存储带来较大压力。基于滚动轴承局部故障振动响应数学模型,提出一种具有较强抗噪 性能的深度降采样方法并应用于滚动轴承局部故障诊断。该方法利用仿真信号构造轴承故障 样本及其标签对所提深度降采样网络进行训练,再将训练好的网络用于实际轴承故障信号的降 采样。实验表明:在合理的降采样率下,所提方法在对原信号进行降维的同时能够很好地保留 故障特征频率成分。相比基于高斯测量矩阵的压缩感知方法,所提方法降采样后的信号具有更 强的故障特征表达能力,无需重构就可直接用于轴承故障诊断。

关键词: 降采样, 深度学习, 滚动轴承, 故障诊断

Abstract: The healthy state of bearings is very important for the normal operation of rotating machinery such as radar driving structure and helicopter transmission mechanism. Aiming at the characteristics of complex working conditions, noise, and insufficient and unbalanced samples of the fault labels of the vibration signals of rolling bearings, this paper proposes an improved one-dimensional convolution neural network fault diagnosis method for rolling bearings based on deformable convolution of the disturbance training samples and depth residual block structure. The deformable convolution is set to improve the ability of extracting local fault features, and the improved depth residual block is introduced to improve the generalization ability and sensitivity of the model to the training data. When the training data are fed, the training disturbance layer is set to add disturbance samples to improve the robustness of the model. The Case Western Reserve University bearing data set is used as the experimental data set to divide the training set and the test set. The experimental results prove the effectiveness of the proposed method. TD-DCCNN algorithm can still achieve an average accuracy of 90.35% when the signal-to-noise ratio is 0, which has certain advantages compared with other diagnostic algorithms.

中图分类号: 

  • TH133.33