重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (9): 88-99.

• “新能源汽车能量管理技术研究”专栏 • 上一篇    下一篇

基于粒子群优化的模糊自适应等效油耗最小能量管理策略

潘公宇,郭丛! ,晋恩荣   

  1. (江苏大学 汽车与交通工程学院,江苏 镇江 212013)
  • 出版日期:2023-10-17 发布日期:2023-10-17
  • 作者简介:潘公宇,男,博士,教授,主要从事车辆系统动力学、新能源汽车技术等研究,Email:774513912@qq.com;通信作 者 郭丛! ,女,硕士研究生,主要从事新能源汽车技术研究,Email:18452480766@163.com。

A fuzzy adaptive minimum energy management strategy for equivalent fuel consumption based on particle swarm optimization

  • Online:2023-10-17 Published:2023-10-17

摘要: 为提高等效燃油消耗最小能量管理策略(ECMS)对不同工况的适应能力,提出一 种基于粒子群算法优化的模糊自适应等效燃油消耗最小的能量管理策略(PSOfuzzyAECMS)。 以基于 SOC反馈原理对等效因子进行比例调节方法为基础,针对仅依靠 SOC反馈的等效因子 调节方式存在一定局限性的问题,引入模糊控制以需求功率和 SOC为输入对比例系数进行调 节,利用粒子群算法优化模糊控制器中的隶属度函数,减少模糊控制在能量管理应用中对专家 经验的依赖,最后在标准循环工况下进行仿真。仿真结果显示:相较于基于 SOC反馈的等效因 子修正方法,本文提出的 PSOfuzzyAECMS策略能够维持 SOC在合理区间内变化,在燃油经济 性和电池充放电平衡方面能够取得更好的控制效果。

关键词: 能量管理策略, 混合动力客车, 等效燃油消耗最小策略, 模糊控制, 粒子群算法

Abstract:

In order to enhance the adaptability of the Equivalent Consumption Minimization Strategy (ECMS) for different operating conditions, a Particle Swarm Optimization-based Fuzzy Adaptive Equivalent Consumption Minimization Strategy (PSO-fuzzy A-ECMS) is proposed. This strategy is built upon the method of proportional adjustment of equivalent factors based on State of Charge (SOC) feedback. Addressing the limitations of relying solely on SOC feedback for equivalent factor adjustment, the PSO-fuzzy A-ECMS introduces fuzzy control to adjust the proportional coefficients based on demand power and SOC inputs. Subsequently, the Particle Swarm Optimization algorithm is used to optimize the membership functions of the fuzzy controller, reducing the dependence on expert knowledge in energy management applications.

In this study, by considering demand power and SOC as inputs, the fuzzy controller dynamically adjusts the proportional coefficients of the equivalent factors. This approach better adapts to energy management requirements under different operating conditions, improving fuel economy and battery charge-discharge balance of the system.

To optimize the membership functions of the fuzzy controller, the researchers employed the Particle Swarm Optimization algorithm. This heuristic optimization algorithm simulates the foraging behavior of bird flocks to find the optimal solution. In this research, the Particle Swarm Optimization algorithm is utilized to adjust the parameters of the membership functions in the fuzzy controller, making the energy management strategy of the system more accurate and efficient.

Finally, the performance of the PSO-fuzzy A-ECMS strategy is evaluated through simulation experiments under standard driving cycles. The simulation results demonstrate that compared to the SOC feedback-based equivalent factor correction method, the PSO-fuzzy A-ECMS strategy better maintains SOC within a reasonable range and achieves improved control effectiveness in terms of fuel economy and battery charge-discharge balance.By incorporating fuzzy control and Particle Swarm Optimization, the PSO-fuzzy A-ECMS strategy enhances the adaptability of the Equivalent Consumption Minimization Strategy for different operating conditions, reduces reliance on expert knowledge, and achieves better control performance.

中图分类号: 

  • U461.91