重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (10): 107-116.

• 车辆工程 • 上一篇    下一篇

FSAC赛车融合感知算法研究

兰建平,郭文韬,杨亚会   

  1. (湖北汽车工业学院 汽车工程师学院,湖北 十堰 442002)
  • 出版日期:2023-11-20 发布日期:2023-11-20
  • 作者简介:兰建平,男,硕士,讲师,主要从事汽车主动安全与智能驾驶研究,Email:20120006@huat.edu.cn;通信作者 郭文 韬,男,硕士研究生,主要从事智能网联汽车多传感器方面研究,Email:2250663394@qq.com。

Research on fusion perception algorithm of FSAC racing car

  • Online:2023-11-20 Published:2023-11-20

摘要: :针对中国大学生无人驾驶方程式大赛(formulastudentautonomousChina,FSAC)中 的单一传感器检测环境适应性差等问题,提出一种基于激光雷达和相机融合的障碍物检测算 法。对激光点云进行滤波、去地面和条件欧式聚类处理,确定锥桶位置;采用 YOLOv7算法对图 像进行检测并获取颜色信息;将传感器进行时空对齐,采用二次最近邻算法进行匹配,获取锥桶 障碍物的位置和颜色信息。采用 FSAC赛车作为实验平台,在动态测试中,该算法比取交集融 合算法的准确率提升了 5.52%,误差降低了 29.47%,速度提升了 21.66%,可以很好地满足检 测的准确性和实时性,较好地实现了无人赛车的感知任务,同时为无人驾驶车辆的融合感知提 供了一定参考依据。

关键词: FSAC, 激光雷达与相机, 融合感知, 二次最近邻

Abstract: In this paper,an obstacle detection algorithm based on the fusion of lidar and camera is proposed to address the poor adaptability of single sensor detection environment in the Formula Student Autonomous China (FSAC).Firstly,the laser point cloud is filtered,de-ground and conditional Euclidean clustering to determine the position of the cone barrel; secondly,the YOLOv7 algorithm is employed to detect the image and obtain the color information; finally,the sensor is spatiotemporal aligned,and the second nearest neighbor algorithm is used for matching to obtain the position and color information of cone barrel obstacles.Using FSAC car as the experimental platform,in the dynamic test,compared with the intersection fusion algorithm,the accuracy of the algorithm is improved by 5.52%,the error reduced by 29.47%,and the speed increased by 21.66%.The improved data well meet the accuracy and real-time requirements of detection,better realize the perception task of unmanned cars,and provide a reference for the fusion perception of unmanned vehicles.

中图分类号: 

  • TP391.41