重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (12): 187-193.

• 机械材料 • 上一篇    下一篇

BP神经网络局部最优缺陷的数控机床热稳健性建模研究

周庆兵, 苗恩铭, 王文辉, 谭瑞林   

  1. 重庆理工大学机械工程学院
  • 出版日期:2024-02-04 发布日期:2024-02-04
  • 作者简介:周庆兵,男,硕士,主要从事数控机床热误差研究,E-mail:191532080@qq.com;通信作者 苗恩铭,男,博士,教授,主要从事精度理论及应用技术研究,E-mail:miaoem@163.com

Thermal robustness modeling of CNC machine tools with BP neural network local optimal defects

  • Online:2024-02-04 Published:2024-02-04

摘要: 针对BP神经网络热误差建模对网络初始值依赖度高、容易陷入局部最优解,导致预测模型灵敏度高而稳健性不足的问题,提出了利用鲸鱼优化算法(whale optimization algorithm,WOA)优化BP神经网络的权值阈值,在一定程度上解决了BP神经网络热误差建模对于网络初始值敏感度高、易陷入局部最优解的问题。以某台Vcenter-55型号三轴立式加工中心为例,进行热误差实验,利用模糊聚类与灰色关联度筛选出2个温度敏感点,再以其Z轴热误差为例建立WOA-BP神经网络预测模型。结果表明:该预测模型相较于BP模型,稳健性预测精度平均提高3.35 μm,具有工程应用价值。

关键词: BP神经网络, 鲸鱼优化算法, 热误差, 稳健性

Abstract: Traditional BP neural network thermal error modeling is highly dependent on the initial value of the network and easily falls into the local optimal solution, resulting in the high sensitivity but insufficient robustness of the prediction model. This paper proposes to optimize the threshold weights of the BP neural network by using the whale optimization algorithm (WOA), which somehow remedies the fore-mentioned problem of BP neural network thermal error modeling. Take a Vcenter-55 three-axis vertical machining center for example. Six thermal error experiments are conducted in six months. Through fuzzy clustering and grey correlation, two temperature-sensitive points are identified, and then the Z-axis thermal error is taken as an example to build the WOA-BP neural network prediction model. A comparative analysis shows the prediction model improves the robustness of prediction accuracy by 3.35 μm on average compared with the traditional BP model, demonstrating its application values in engineering.

中图分类号: 

  • TH161