重庆理工大学学报(自然科学) ›› 2023, Vol. 37 ›› Issue (12): 252-259.
赵永辉, 万晓玉, 吕勇, 刘雪妍, 刘淑玉
摘要: 针对传统PSO无人机航迹规划算法在林业资源防护任务中存在收敛速度慢、易陷入局部最优的问题,提出了一种基于CGPSO的无人机航迹优化算法(cauchy gauss particle swarm optimization,CGPSO)。借助雷达传感器对林间环境进行预检,构建了无人机飞行任务环境模型;引入了自适应惯性权重和融合柯西-高斯变异算子调整粒子群算法,平衡全局-局部收敛速度,优化局部极值问题;综合分析了无人机航迹长度代价、障碍物碰撞代价和高程范围代价,建立了航迹规划适应度函数。仿真结果显示,所规划算法适应度标准差达到了0.148 6,用时54.34 s,相比PSO算法,收敛代价值减少了42%,用时提升了25%,与所有算法相比,整体航迹具有较强的鲁棒性,对环境的适应性更优。因此,采用新规划航迹算法在林区进行林业资源防护工作是可行的。
中图分类号: